IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1962

New techniques for data evaluation and control in soil engineering investigations

Coleman Anthony O'Flaherty *Iowa State University*

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Civil Engineering Commons</u>

Recommended Citation

O'Flaherty, Coleman Anthony, "New techniques for data evaluation and control in soil engineering investigations " (1962). *Retrospective Theses and Dissertations*. 2070. https://lib.dr.iastate.edu/rtd/2070

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digrep@iastate.edu.

This dissertation has been 62-4172 microfilmed exactly as received

 $\mathcal{L} = \{1, \dots, n\}$

O'FLAHERTY, Coleman Anthony, 1933-NEW TECHNIQUES FOR DATA EVALUATION AND CONTROL IN SOIL ENGINEERING INVESTI-GATIONS.

Iowa State University of Science and Technology Ph.D., 1962 Engineering, civil

University Microfilms, Inc., Ann Arbor, Michigan

NEW TECHNIQUES FOR DATA EVALUATION AND CONTROL IN COLL ENGINEERING INVESTIGATIONS

by

Coleman Anthony O'Flaherty

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Soil Engineering

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy. Head of Major Department

Signature was redacted for privacy.

Dean of Graduate/College

Iowa State University Of Science and Technology Ames, Iowa

TABLE OF CONTENTS

	Page	
INTRODUCTION	1	
PURPOSE OF THE INVESTIGATION	3	
METHOD OF PRESENTATION OF DATA	5	
PRESENTATION OF RESULTS	7	
Part 1 - Correlation Study Involving Two Methods of Testing Soils	7	
Purpose of the study Background data Materials Experimental procedure Statistical analysis of data	7 7 8 10 17	
Engineering analysis of data	47	
Part 2 - Detecting Outliers in a Large Series of Soil-Additive Strength Determinations	· 49	
Purpose of the study	50	
Disqualification test for triplicate studies Criterion for the reliability of the	50	
investigation as a whole Examples involving the use of the	55	
recommended procedures Discussion	56 59	
Part 3 - Further Methods for the Control of Data Quality	63	
Purpose of the study	64	
Proposed disqualification test for studies involving four specimens per test condition	64	
Observations on the number of specimens per test condition Method of selecting specimens so as to	70	
minimize inherent specimen differences due to time or other factors	72	
The use of control specimens in detecting outliers	74	
The use of control specimens in evaluating the uniformity of materials during the investigation	82	
Part 4 - Detecting Outliers in a Small Series of Soil-Additive Strength Determinations	90	

.

	Page
Purpose of the study Proposed test procedure Discussion	92 92 95
Part 5 - Method of Evaluating the Reliability of a Curing Chamber and Operator Variability due to Time Trends	96
Purpose of the study Proposed test procedure Example involving the use of the	96 96
proposed procedure Discussion	100 105
SUMMARY AND CONCLUSIONS	109
FUTURE INVESTIGATION	111
BIBLIOGRAPHY	112
Literature Cited Additional References	112 114
ACKNOWLEDGEMENTS	115
APPENDIX A	116
APPENDIX B	119
APPENDIX C	121

.

INTRODUCTION

The prosperity of any nation is bound up with the state of its roads. Nowhere is this more true than here in the United States. As the highways and byways of this country were improved and increased, vast new areas were opened to commercial use and it became possible to make use of the infinitely great natural resources of the virgin lands.

The growth of the road in the U. S. has not kept pace with other developments. The present highway system is taxed to its utmost and its future growth and improvement is regarded as a national necessity. Allweather roads, capable of carrying the modern day traffic for which they are designed, are required. A big drawback is the fact that all-weather roads are expensive to construct, especially in areas that lack suitable raw materials. As a result, many investigative efforts have been and are being undertaken in order to discover economical additives that will stabilize the in-place soil. The number of these investigated additives are numerous and the methods by which are evaluated are many.

Soil stabilization has not yet arrived at the stage whereby the results obtained by these accepted tests can be said to be "true" values. In many cases the design engineer is left with little knowledge as to what degree of confidence he can place in the results furnished to him. Too often the engineer overcomes this difficulty by specifying a high factor of safety in his highway design. It is believed that, in many instances, more credulity could be given to test results-and thus cause a lowering of the factor of safety-if statistical methods had been applied to the design and analysis of the experiment upon which the engineer's conclusions are based.

The application of statistical methods to engineering studies is not a new process as it has been going on for over thirty years. In 1924 W. A. Shewhart (1) wrote his paper "Some Applications of Statistical Methods to the Analysis of Physical and Engineering Data" for the Bell System Technical Journal and thus sowed the seed which led to the revolutionary growth in the application of statistical methods to industrial requirements. The decision to apply these methods to the engineeringcum-industrial fields was based on hard facts. The large industrial

· · 1

research laboratories and the great research institutions were interested in any techniques that would increase the return from the research and development dollar. They found that it was an economic-as well as scientific-fact that statistics, particularly the design and analysis of experiments, had a tremendous effect on the amount and quality of the information obtained from experimental work.

It is still, however, the belief of many researchers that statistical procedures are only useful at the end of an investigation-that is, when it comes to the final analysis of the data. This is not correct. Too often, after the data has been analyzed in this manner, the statistician has had to tell the investigator that his conclusions are, in fact, inconclusive: that they were bound to be so, as an inadequate amount of preparation went into the study and, as a result, inadequate data was obtained. The reasons for this are, of course, many-all depending on the type of work involved. Often times, however, much more reliable conclusic...s could be reached if a little more attention had been paid to the choosing of the experimental conditions, the number of tests to be run at the different experimental conditions, the number of samples per test condition or to the many other important variables involved.

Unfortunately, relatively little attention appears to have been paid to the application of statistical methods to soil stabilization studies. A search of the literature discloses many instances where certain amounts of statistics have been applied to the analyzing of data. However, in the great majority of these cases, the statistics appear to have been used only towards the end of the study and then only to suit particular purposes. Very many of the standard soil engineering tests are accepted with insufficient research into the variables involved in the tests. In rare instances are there statistical recommendations, specific to soil engineering studies, on how to analyze the data or to investigate the many variables involved.

It is felt that such studies and recommendations are needed in this new-yet old-science of soil engineering and, particularly, soil stabilization. It is towards helping to satisfy this need that this work was instigated.

PURPOSE OF THE INVESTIGATION

The primary purpose of this study was to provide some statistical methods which would help the soil engineering researcher to control and evaluate his results. In order to obtain data to illustrate and substantiate these recommendations, controlled experiments were conducted which involved two of the more common soil engineering tests. These experiments were also designed in order to give needed information from the purely engineering aspect.

In brief, this study was directed towards developing the following procedures-cum-recommendations:

- 1. Method for detecting outliers in a typical correlation study involving two methods of testing a stabilized soil.
- 2. Method for determining if a relationship, valid over a wide range of experimental conditions, exists between two methods of testing a stabilized soil.
- 3. Method for detecting outliers in a large series of soil-additive strength determinations involving triplicates of specimens.
- 4. Method for determining the reliability-as a whole-of an investigation that involves a large series of soil-additive strength determinations utilizing triplicates of specimens.
- 5. Method for detecting outliers in a large series of soil-additive strength determinations involving quadruples of specimens.
- 6. Recommendations regarding the number of specimens-per test condition-to use in an investigation involving large numbers of soil-additive strength determinations.
- 7. Method of selecting specimens for testing so as to minimize inherent specimen differences due to time or other factors.
- 8. Methods-involving the use of control specimens-to evaluate the validity of an investigation involving large numbers of soiladditive strength determinations.
- 9. Recommendations regarding the preparation of a soil sample prior to the actual investigation.
- 10. Method for detecting outliers in a series of soil-additive strength

determinations involving small numbers of strength determinations.

- 11. Method for evaluating the reliability of a curing chamber.
- Method for determining if there is significant operator variability due to time trends.

To illustrate the above items, two investigations were conducted under controlled conditions. The first of these involved determining if a relationship, valid over a wide range of experimental conditions, existed between two methods of determining the strength of a stabilized soil. These two methods are the California Bearing Ratio and the unconfined compressive strength tests. The second of these controlled experiments involved determining the effects of fly ash and sodium carbonate as additives to soil-cement mixtures.

METHOD OF PRESENTATION OF DATA

This study involves statistical methods aimed toward soil stabilization investigations, examples of the use of such methods under actual experimental conditons and the engineering results obtained in the course of these experiments. As a result, there are many ways in which the data could be presented. One of the more obvious, perhaps, is that of a complete separation of the engineering and statistical works. It is felt, however, that the studies presented in this text are so interwoven that such a separation is not justified. For this reason, the data are presented in the following, most logical, manner.

The studies are presented in the sequence in which they actually took place and the analyses, both statistical and engineering, are shown in the same manner. The methods of test, materials involved and background information-both statistical and engineering-are also indicated where they can be most useful in interpreting the test results and understanding the procedures involved in the investigation.

The procedures-cum-results are presented in six parts, under the following titles:

Part 1 - Correlation Study Involving Two Methods for Testing Soils

This section contains details of items 1 and 2 as listed under "Purpose of the Investigation". The engineering results obtained in this phase of the main study are also reported here.

Part 2 - Detecting Outliers in a Large Series of Soil-Additive Strength Determinations

This part of the investigation contains details relating to items 3 and 4 as listed under "Purpose of the Investigation".

Part 3 - Further Methods for the Control of Data Quality

This phase of the investigation involves items 5 to 9 as listed under "Purpose of the Investigation". To obtain data to illustrate this part of the study, a controlled experiment

involving the addition of fly ash and sodium carbonate to soil-cement mixtures was conducted.

Part 4 - Detecting Outliers in a Small Series of Soil-Additive Strength Determinations

This refers to item 10 as discussed under "Purpose of the Investigation".

Part 5 - Method for Evaluating the Reliability of a Curing Chamber and Operator Variability Due to Time Trends

This section contains details relating to items 11 and 12 as discussed under "Purpose of the Investigation".

It should be emphasized here that although the recommended procedures are presented under specific sub-titles, it is hoped and intended that they may also be utilized in other, but similar, types of soil engineering studies. For this reason, the recommended procedures are presented in as straightforward a manner as possible so that they may be used by the soil engineering researcher who, perhaps, is not too familiar with statistical terminology.

PRESENTATION OF RESULTS

Part 1 - Correlation Study Involving Two Methods of Testing Soils

One of the big difficulties in soil stabilization studies is the general inadequacy of existing testing procedures for determining the exact performance rating of an improved soil for highway pavement design purposes. New methods of testing are continually being devised to do this and generally attempts are made to correlate the results they give with those obtained by means of other known-to-be-reliable, although perhaps empirical, testing methods. At the moment, the most commonly used criterion for evaluating an improved soil is its unconfined compressive strength (UCS). The California Bearing Ratio (CBR) is also used as a design criterion for stabilized soils.

Purpose of the study

The objective of this phase of the investigation was, therefore, to determine whether a tight functional relationship, valid over a wide range of experimental conditions, existed between the two above methods of determining the strength of a cement-stabilized soil. It is hoped that the procedures presented here and the methods by which the data are analyzed will serve as prototypes for other future correlation work of a similar nature.

Background data

Although the UCS test is widely used in design, nevertheless the exact minimum design criteria have yet to be established. The British Road Research Laboratory suggests a minimum 7-day strength value of 250 psi for soil-cement, in order to withstand the requirements of the American Society for Testing Materials (ASTM) durability test for wetting and drying or freezing and thawing (2). The Portland Cement Association states that soil-cement having an UCS of 300 psi after 7 days will usually pass the durability tests (3).

The California Bearing Ratio test is very much used in flexible pavement design. An excellent description of the history and development of the test is given in the 1950 Transactions of the American Society of Civil Engineers (4). It is known that at least 14 of the 50 states now use the CBR value of a soil as their principal strength standard in highway design (5). The CBR test has been extensively correlated with the field performance of soils and it has been found that materials directly under the bituminous surface of a highway should have a CBR of at least 80% -this is equivalent to a laboratory CBR of about 120% (6). Lower CBR values are allowed at greater depths as the wheelload stresses are more widely distributed.

While the reliability of the CBR test for pavement design purposes is excellent, nevertheless the test has many disadvantages. Not only does the test require large quantities of soil and stabilization materials, but, in addition, it is relatively difficult and time-consuming to perform. The penetration test itself requires the services of two people for a minimum of ten minutes actual penetration time. On the other hand, the UCS test is simple to perform and requires small volumes of soil. To illustrate, it may be mentioned that in the work described here, each CBR specimen took at least one hour to prepare and test, whereas each pair of UCS samples required, on an average, a maximum of fifteen minutes to prepare and test. The amount of soil required for each CBR test was about ten pounds while only about one half-pound was required for each UCS test.

Materials

The soil used in this investigation was a dune sand typical of those found in eastern Iowa. Sampling location and properties of the soil sample are given in Table 1.

Location:	Benton County, Western Iowa Sect NW 1/4, SE 1/4, S-16 Twp 86 N, Rn 10 W	Geological description	Wisconsin-age eolian sand, fine grained, oxidize leached	
Soil series:	Carrington	Horizon:	С	
Sampling depth, in feet:	6 - 11	IEES code number:	S-6-2	
Textural composition, $\%$: ^a Gravel (2 mm.) Sand (2 - 0.074 mm.) Silt (74 - 5 μ) Clay ($<5\mu$) Colloids ($<1\mu$)	0.0 94.4 1.6 4.0 3.5		artz dspar	73.4 19.9 3.2 0.2 Trace 1.0 2.5
Predominant clay material: ^C Specific gravity 25C/4C:	Montmorillonite and illite interlayer 2.64	Physical properties: Liquid limit, % 9. Plastic limit, % Plasticity index Non-plastic		.9.0
Chemical properties:		Classification	n:	
Carbonates, % ^d pH Organic matter, % ^d	0.02 6.5 0.04	Textural Engineer (A.A.S.)	ing A	8and A-3 (0)

Table 1. Description and properties of sand

^aDispersed by air-jet with sodium metaphosphate dispersing agent. Coarse sand, 12.9%; fine sand, 81.5%.

^bMaterial larger than 0.044 mm. (Per cent by volume of the whole sample)

^cFrom X-ray analysis.

^dPer cent by weight of oven-dry soil.

The cement used was a Type I normal Portland cement. Its properties are given in Table 2.

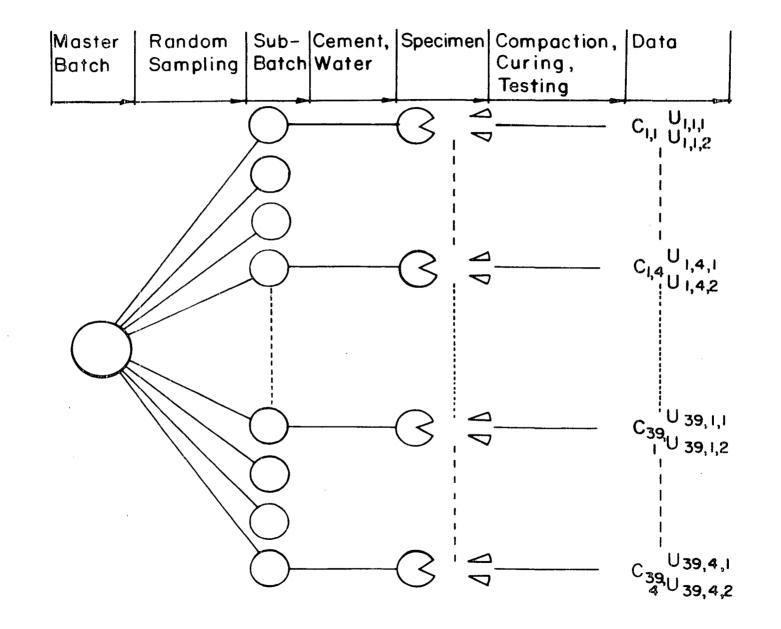
Cement type: I		
Chemical composition, %		
Silica	21.62	à
Alumina	5.04	
Iron oxide	2.97	
Lime	64.05	
Magnesia	2.90	
Sulfur trioxide	2.26	
Ignition loss	0.58	
Insoluble residue	0.16	
Physical properties:		
Fineness, turbidometer (Wagner), sq. cm. /gm.		1855
Fineness, air permeability (Blaine), sq. cm. /gm.		3395
Compressive strength		•
1 day, psi	, · · ·	
3 day, psi		2269
7 day, psi		3721
28 day, psi		5625

Table 2. Cement properties^a

^aData supplied by Penn-Dixie Cement Corporation, Des Moines, Ia.

Experimental procedure

<u>Soil sample</u> The first step consisted in preparing a large homogenous master batch of the sandy soil from which 156 sub-batches were randomly selected. These were then partitioned into 39 quadruple subbatches. Members of the same quadruple were then handled in the same manner, the same specified amounts of cement and water being added to each. Each such quadruple member was then sub-divided into three specimens for UCS testing.


The experimental origins of the CBR values and the UCS values are perhaps best illustrated schematically as in Figure 1.

<u>CBR test</u> All CBR specimens were prepared and tested according to the ASTM "Tentative Method of Test For Determining the Bearing Ratio (CBR) of Soils, 1959", with some exceptions as described now. Due to the large number of CBR specimens that had to be prepared and tosted, it was felt to be impractical to use the CDR mold as described by ASTM. Instead a special CBR mold was devised. This mold is shown in Figure 2. It consists, simply, of a standard CBR mold cut on one side only. A 1/16 in. wide piece of steel, of such size and contour as to replace <u>exactly</u> the milled material, was then inserted into the gap and soldered onto one side of the mold. The gap was then closed or opened as required by means of the bolt attachment shown in Figure 2.

Utilizing this mold, CBR specimens were prepared in the following manner. Using the bolt attachment, the gap on the side of the mold was closed as tightly as possible using a hand wrench. The inside of the mold was then lightly coated with oil. The mold-with collar attached-was clamped to the base plate and the spacer disk inserted into the mold. Two circular layers of wax paper, each just under 6 in. in diameter, were placed on top of the disk. The soil, cement and water mixture was then compacted in the mold in accordance with the standard procedure (7). After compaction the extension collar was removed and the compacted material was carefully trimmed so as to be even with the top of the mold. The spacer disk and base plate were then removed and the mold plus compacted material weighed. A piece of wax paper, approximately $7 \frac{1}{2}$ in. square, was placed on each end of the mold and fastened in place by means of tight elastic bands. The mold was then placed in the curing room for 24 + 3 hours. Care was taken that the mold rested on the end at which the soil cement was trimmed level with the lip of the mold. After this curing period, a mark was made on the mold lip and a similar adjacent mark was made on the soil-cement specimen. The bolt attachment on the outside of the mold was then loosened, allowing the mold to open about one-fourth of an inch. Usually this was sufficient to allow the mold to be withdrawn from the specimen. The specimen was then carefully wrapped in wax paper, sealed with adhesive tape, and then replaced in its original position in the curing room.

In order to perform the penetration test, the CBR specimen was unwrapped and replaced in its original mold so as to fit its original contour. This was checked by having a mark on the specimen line-up

Figure 1. Structure of the experiment involving the California Bearing Ratio and unconfined compressive strength tests.

Ц

Figure 2. Modified California Bearing Ratio mold.

.

.

.

.

with a similar mark on the mold. The mold was then closed about the specimen using a hand wrench to tighten the bolt attachment as tightly as possible. The penetration test was then immediately carried out upon the specimen and the CBR value read at 0.10 inch penetration.

Some specimens were soaked before being tested. In such cases, the CBR specimens were taken from the curing room, unwrapped and immersed in distilled water. Care was taken that the water surface remained a constant 1 1/2 in. above the top of each specimen. The soaking period for such specimens was 24 + 2 hours.

<u>UCS test</u> Specimens used in this test were 2 in. in diameter by 2 in. high. They were molded and compacted using a drop-hammer molding apparatus developed by Davidson and Chu (8). After compaction, specimens were ejected from the molds with a hydraulic jack. Each specimen was weighed to the nearest 0.1 g. and its height measured to the nearest 0.001 in. A height tolerance of \pm 0.05 in. was maintained on all specimens.

Each specimen was wrapped in wax paper and sealed with adhesive tape before being placed in the curing room. After curing, the unconfined compressive strength of each specimen was obtained by means of a testing machine of the proving ring type. Load was applied to each specimen, the rate of deformation being 0.10 in. per minute, until complete failure was reached. The maximum applied load in pounds was divided by the cross-sectional area of the 2 in. diameter specimen and the result, in psi, reported as the unconfined compressive strength of the specimen.

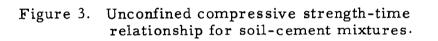
Certain 2 in. diameter by 2 in. specimens required soaking prior to testing. Such specimens were unwrapped and immersed in distilled water for 24 ± 2 hours. Care was taken that, at all times, the surface of the water was one-fourth of an inch above the top of each sample.

<u>Dry Densities</u> One CBR specimen and two UCS specimens were prepared from each sub-batch. A moisture sample was taken immediately prior to the preparation of the first specimen and immediately after the compaction of the last specimen. The average of these two moisture contents was then used to calculate the dry densities of the

three specimens prepared from that particular sub-batch. The dry densities of the two types of specimens were judged to be within acceptable limits of variation. The average dry densities obtained at varying cement contents are shown in Table 3.

Type of specimen	Cement content, % of total mix		
	5	8	11
UCS	107.2	111.0	112.1
CBR	105.0	108.7	110.8

Table 3. Average dry densities of soil-cement specimens in poundsper cubic foot

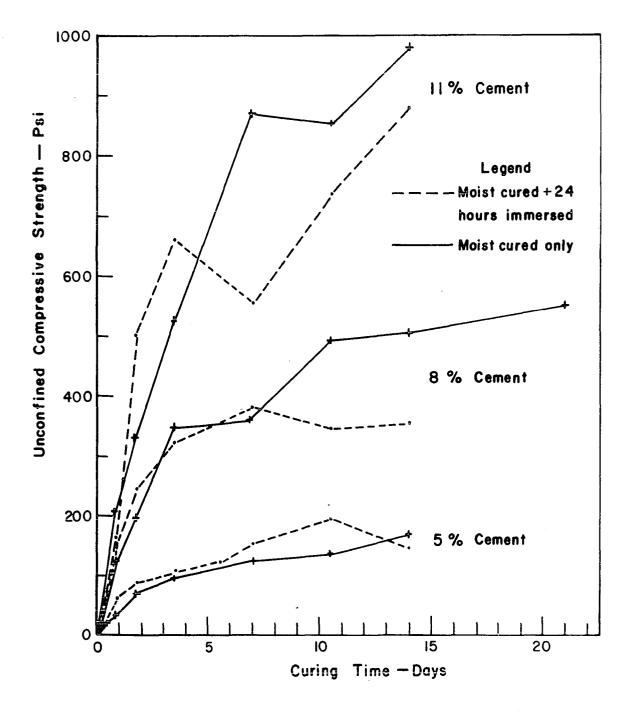

<u>Curing</u> Each CBR specimen and its corresponding pair of UCS specimens were placed side by side in the curing room. The temperature in the curing room was maintained at 70° F. and the humidity at 90% relative humidity. Moist curing periods varied from 10 hours to 21 days. Approximately half of the specimens were then cured for a further 24 + 2 hours by immersing them in distilled water.

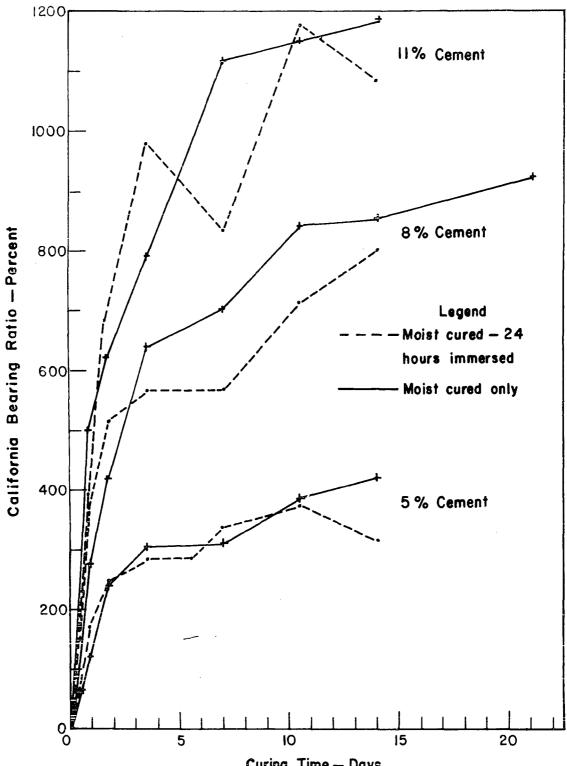
<u>Cement contents</u> Specimens were prepared using cement contents of 5, 8 and 11 percent by weight of total mix.

Statistical analysis of data

Such a large investigation as this almost always reveals several suspect quadruples which, although they "fall out of line" in some respect, cannot be eliminated by pointing to known and noticed causes. Some criteria are therefore needed whereby suspect values can be deemed either "true" or "false". The following procedure for detecting outliers is believed to be applicable to investigations such as this.

<u>Outlier analysis</u> The data is examined for inhomogeneity in two different respects. The point of view adopted here is that a particular quadruple should be discarded if it appears to be suspected in both examinations.




Figure 4. California Bearing Ratio-time relationship for soil-cement mixtures.

.

.

.

•

Curing Time - Days

Deviations of quadruple averages from trends exhibited in Figures 3 and 4 Figures 3 and 4 indicate the strength results obtained under varying conditions. The values upon which these graphs are based are shown in Appendix A. Examination of these graphs indicates that, perhaps, some values should be suspected. The most obvious are the 7-day strength values-both UCS and CBR-for the 11 percent cement, moist cured specimens. Another, perhaps, is the 14 day, immersed CBR value obtained with 11 percent cement.

Unusual consistency in quadruple configurations This test is intended to give a look at internal quadruple structure.

As mentioned already, the first step consisted in preparing a large homogeneous master batch from which 152 sub-batches were randomly selected. These were then partitioned into 38 quadruple sub-batches. Members of the same quadruple were then handled in the same manner, the same specified amount of cement and water being added to each. Each such member was then sub-divided into three specimens, one large specimen for the CBR testing and two smaller specimens for the UCS testing. These three specimens were then cured in the same manner, for a specified length of time, before being tested.

For convenience, the 456 resultant strength values are labelled C_{ij} and U_{ijk} , where i varies from 1 to 38, j from 1 to 4 and k from 1 to 2. Thus, as indicated in Figure 1, C_{ij} denotes the CBR figure from the jth sub-batch at the ith set of factor levels and U_{ijk} denotes the UCS figure for the kth aliquot (equal part) prepared from the jth sub-batch at the ith set of factor levels.

Let $X_1 \le X_2 \le X_3 \le X_4$ be the four strength values, ordered from lowest to highest, obtained from each quadruple set. It is now necessary to examine the differences between X_1 and X_2 , X_2 and X_3 , and X_3 and X_4 as the proposed statistic will involve these gaps. It is to be expectedeven under the assumption of homogeneity-that both of the gaps $(X_4 - X_3)$ and $(X_2 - X_1)$ will tend to be larger than the gap $(X_3 - X_2)$. It is therefore necessary to adjust them to equal expectation. This is most easily

done by multiplying $(X_3 - X_2)$ by

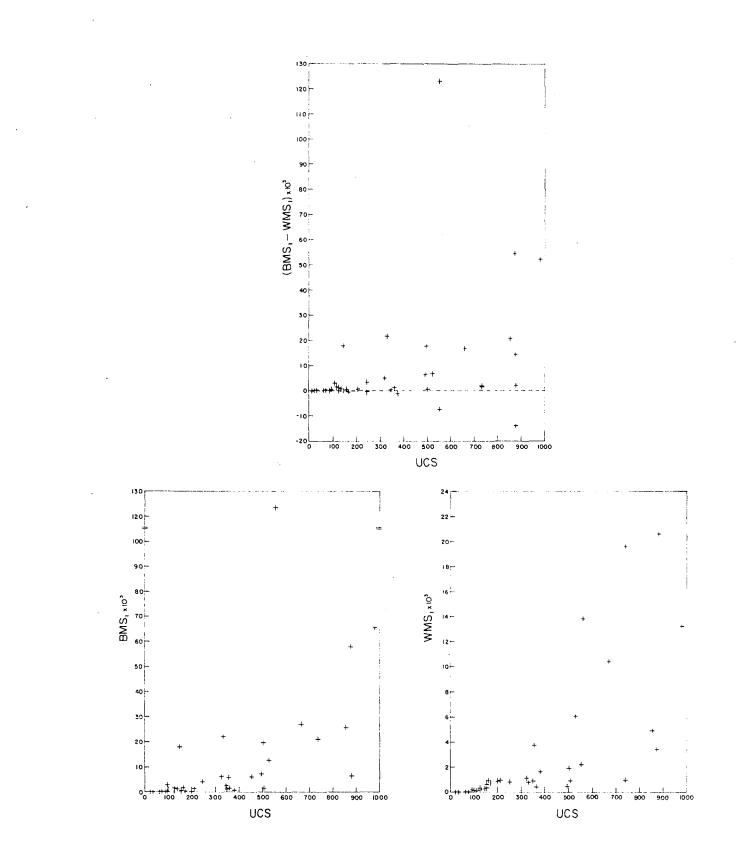
$$a = E(X_2 - X_1)/E(X_3 - X_2) = E(X_4 - X_3)/E(X_3 - X_2) = 1.2329$$

as indicated in reference (9).

The proposed outlier test procedure now requires the computation of the following statistic:

$$R_{o} = \frac{\text{largest of } (X_{3} - X_{2}), \ a(X_{3} - X_{2}), \ (X_{2} - X_{1})}{\text{2nd largest of } (X_{4} - X_{3}), \ a(X_{3} - X_{2}), \ (X_{2} - X_{1})}$$

for each set of quadruple determinations. The purpose for so doing is in order that the sample cumulative distribution function (CDF) of the R_o values can then be examined with respect to the maximum absolute deviation, D_n , between this sample CDF and the theoretical CDF of R_o as obtained under the normality assumption. The hypothesis that the entire series is homogenous is rejected if this statistic is too large.

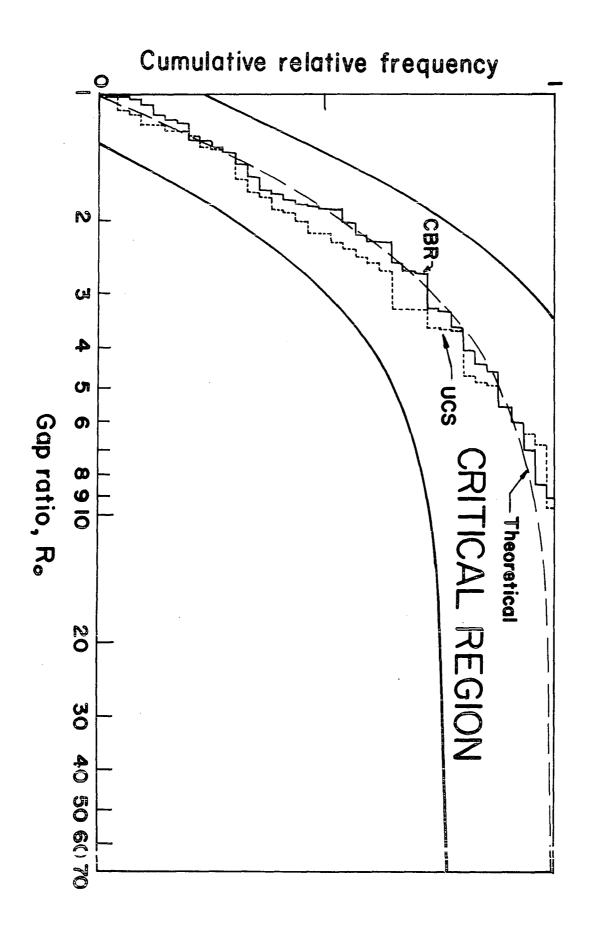

Before actually computing for this statistic it is necessary to consider the following two factors.

A. Should the adjusted gap ratios R_0 be computed for quadruples of UCS aliquot averages \overline{U}_{ij} ; j = 1, 2, 3, 4, or should they be computed for octuples U_{ijk} ; j = 1, 2, 3, 4; k = 1, 2?

B. If the \tilde{R}_{o} statistics are computed for UCS quadruples U_{ij} , should their R_{o} 's be pooled with the R_{o} 's computed for the quadruple CBR determinations in one over-all test involving all 76 R_{o} values or, alternatively, should separate tests be conducted, one involving only the 38 UCS values, the other involving the 38 CBR values?

The answers to these questions depend upon the correlation structure of the data. If the UCS data show no intra-sub-batch correlation, then either a quadruple or octuple approach to the UCS data is correct, with preference likely given to the more informative octuple approach. On the other hand-unless special distributions are computed-only the quadruple approach is possible if intra-sub-batch correlation does exist. As for the second question, either approach is valid if the R_o's for the UCS series are independent of the R_o's for Figure 5. Assessment of the relationship between inter-sub-batch variance and batch mean.

-



the CBR series. The pooled approach is to be preferred if it is desired to have "experiment-wise" error control; separate tests are to be proferred if it is desirable to examine the two series separately, as for instance if two operators are involved in the two series.

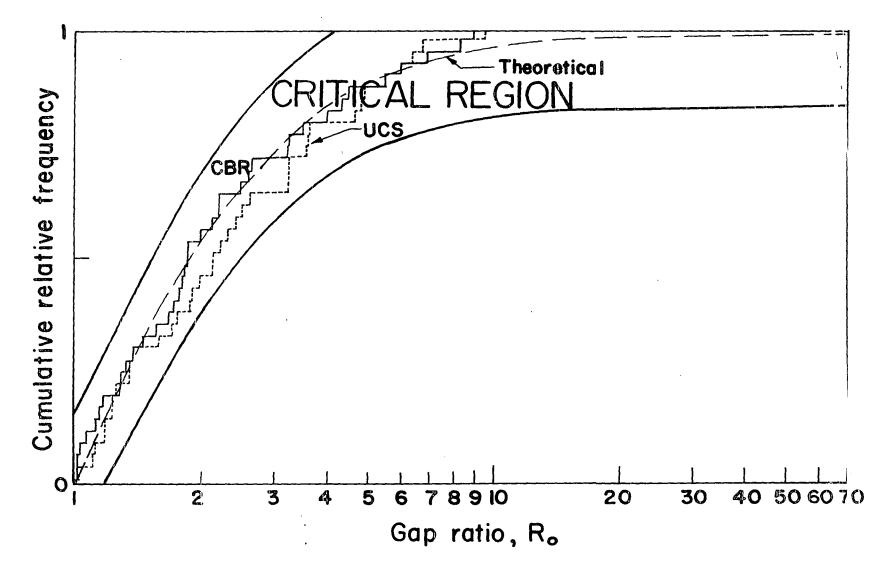
It is easily verified that intra-sub-batch correlation does exist for the UCS series. Let WMS_i be the four-degree-of-freedom within-subbatch (or between-aliquot) mean square, and BMS_i the three-degree-offreedom between-sub-batch mean square computable on the basis of the octuple ($U_{i11} \cdots U_{i42}$). The 38 points ($\overline{U}_{i...}$, BMS_i - WMS_i) are plotted as indicated in Figure 5. These 38 points, far from hovering about zero, tend to fall on an upward turning parabola whose vertex is at the origin, thus establishing that there is a within-sub-batch correlation. This is corroborated by the plots of Figures 5a and 5b. Intra-sub-batch correlation is, of course, to be expected, in view of the structure of the experiment as outlined in Figure 1. At any rate, its presence eliminates the possibility of conducting the UCS analysis on the basis of octuples.

It remains only to check on the dependence, if any, of the 38 R_0 's computed for quadruples of UCS aliquot averages \overline{U}_{ij} and the 38 R_o 's computed for quadruples C_{ij} of single CBR determinations. Here, the existence of the UCS intra-sub-batch correlation, which of course amounts to the existence of a UCS sub-batch effect, makes it plausible that some such dependence exists, since, as indicated by Figure 1, a given sub-batch will yield both a member C_{ij} of a CBR quadruple and a member \tilde{U}_{ij} of a UCS quadruple. This plausibility is reinforced by certain additional features of the experiment not exhibited by Figure 1 such as the fact that the single CBR specimen and the two UCS specimens (or aliquots) made from the same sub-batch were cured side by side in the curing chamber. It is therefore surprising that the data nevertheless indicate that the two sets of R_0 's are, in fact, independent. This was verified by transforming all 76 R_0 's to unit-normality and computing the coefficient of correlation r = -.016, which, being negative, requires no further computation for acceptance of independence. This lack of dependence now makes it possible to choose between conducting two

Figure 6. Theoretical and empirical CDF's for the UCS and CBR data: critical region is for a 2 1/2% test

separate tests and conducting a single pooled test. Since two different operators actually were involved in the CBR and UCS series, it was decided to forego the advantage of experiment-wise error control, and to conduct two separate tests. This step turned out to be rewarding, since the suspected greater reliability of the operator for the CBR series seems borne out by the better behaviour of the empirical CBR CDF as indicated in Figures 6 and 7.

In Figures 6 and 7 are plotted the theoretical CDF and the sample CDF's for the R_o values obtained from the UCS and CBR quadruples. The critical region in each figure is in fact a critical region for the sample CDF of R_o's, if this sample CDF is considered so that the portions at height 0 and 1 are deleted. Two critical regions are given. The critical region in Figure 6 is for a 2 1/2 percent test and consists of comparing D_n to a constant ϵ that is exceeded by D_n with probability only 1-.95^{1/2} when all 38 quadruples of the series are internally homogeneous. This constant ϵ is computed from Millers formula (10) where n = 38, a = $(1-.95^{1/2})/2$ and A (a) = .17. This gives a value


of $\epsilon = .2347$, which means that the total vertical distance between the curved critical-region boundaries is .4674.

It could perhaps be argued that, in a large investigation such as this, a 2 1/2 percent test is too stringent and unrealistic. The critical region corresponding to a level of . 30 is shown in Figure 7. ϵ then becomes .55.

It is clear that in this investigation all the strength values appear to be statistically valid.

Detectable inhomogeneities A final remark concerns the types of inhomogeneities that will be detected by the above test procedure. Any feature of the series leading to undue accumulation at specific R_o values-such as an operator fabricating determinations or split-plottingwill be detected. In addition, isolated "single splits" among population means, of form $(\mu - \mu - \mu - \mu)$, $(\mu - \mu - \mu - \mu)$ or $(\mu - \mu - \mu - \mu)$ will be detected. "Double splits" and "triple splits" of type $(\mu - \mu - \mu)$, $(\mu - \mu - \mu)$, $(\mu - \mu - \mu)$, and $(\mu - \mu - \mu)$ will not be Figure 7. Theoretical and empirical CDF's for the UCS and CBR data: critical region is for a 30% test

.

detectable. Parenthetically, this lack of power against double splits is the penalty paid by R_{c} for good power against single splits.

<u>Correlation study</u> There are many procedures available in statistical methodology whereby it can be determined if a relationship exists between two or more variables. These standard procedures are most useful when either none or only one variable is subject to error and when it is required to predict the dependent variable from the known independent variable.

Standard procedures, however, are not available for the problem presented in this experiment since both the UCS and the CBR measurements are subject to error. The following procedure, therefore, is presented as being a logical approach to a problem such as this. The primary purpose is to determine if there is, in fact, a direct relationship between the results obtained using both methods of testing and, in so doing, to determine what is the best line-of-fit that will most nearly minimize errors in prediction.

<u>Regression analysis</u> The first step in the analysis was to plot all the CBR values against their corresponding UCS values, using linear graph paper. This plot is shown in Figure 8. This grouping of the data strongly suggested that a relationship does exist between the results obtained from both methods of test. When the data was transformed by means of logarithims, as shown in Figure 9, it appeared very likely that this relationship might be a linear one between log CBR and log UCS.

Figures 9, 10 and 11 now suggest that the following statistical model (*) will afford a reasonable description of the data if it is hypothesized that a simple functional relationship relates UCS logs to CBR logs in the absence of test errors.

$$X_{ij} = \log (UCS_{ij}) = \beta + \epsilon_{ij}$$

$$Y_{ij} = \log (CBR_{ij}) = a + \beta \beta_i + \gamma_{ij}, i:1, 2..., 39, j:1, 2, 3, 4$$

where

 ξ_i = errorless log UCS for the i th test condition

Figure 8. Relationship between CBR values and UCS values for soil-cement mixtures.

.

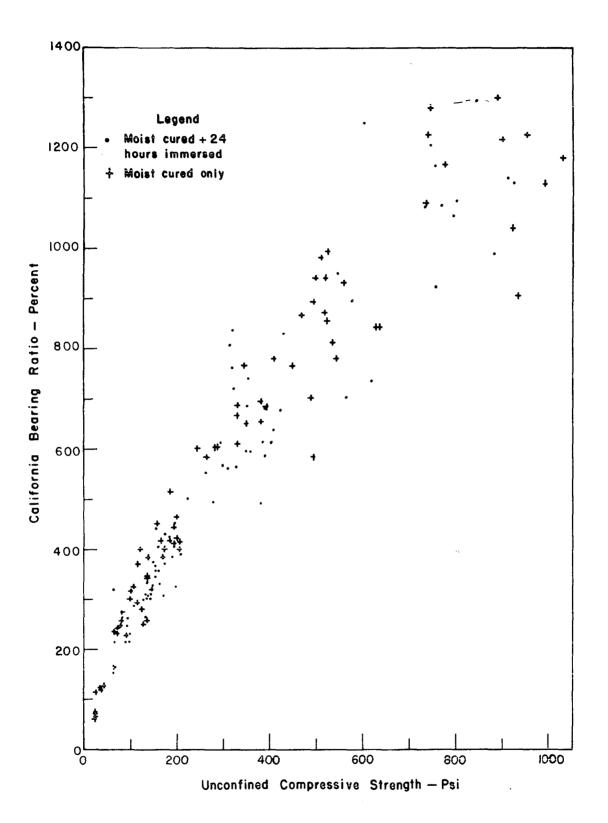
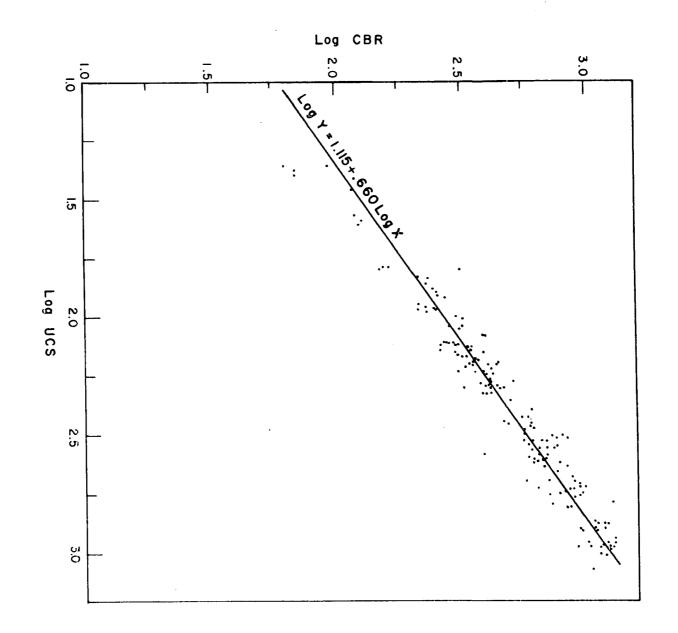
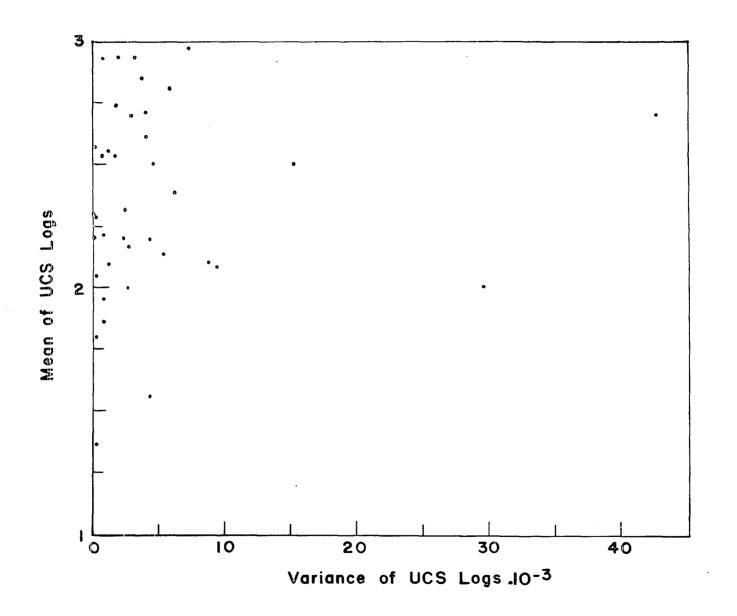


Figure 9. Relationship between log CBR and log UCS values for soil-cement mixtures.




Figure 10. Relationship between the mean and the variance of UCS logs.

٠

7

.

ţ.

ω -1

.

Figure 11. Relationship between the mean and the variance of CRB logs.

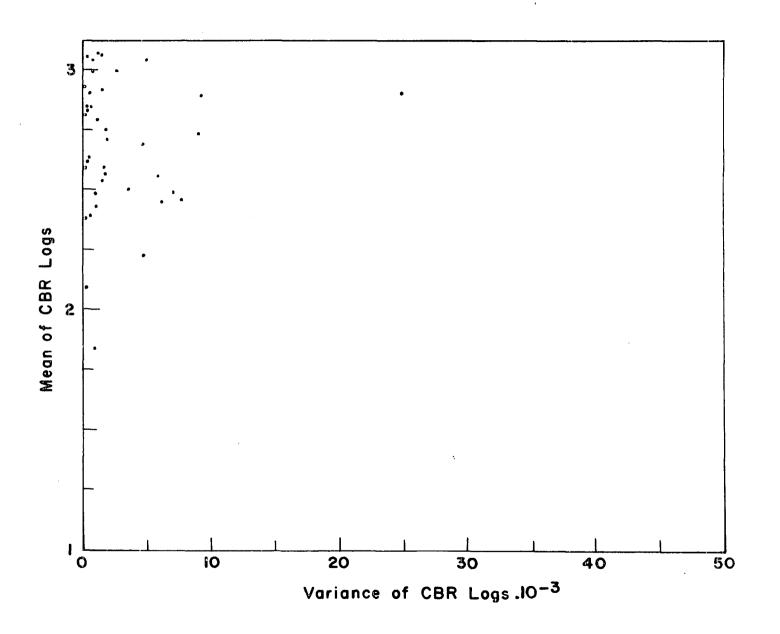
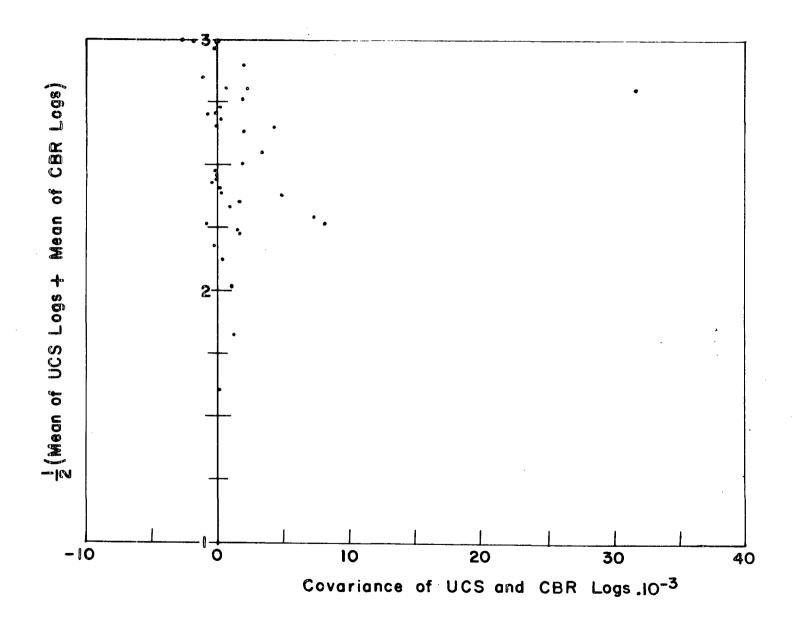
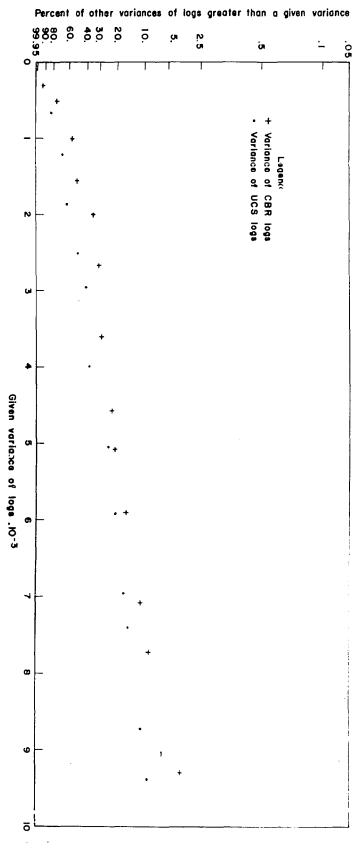



Figure 12. Relationship between the mean of the UCS and CBR logs and the covariance of the UCS and CBR logs.


.

¢,

12-

Figure 13. Indication that the log CBR and log UCS variances follow the chi-square distribution arising under normality.

Percent of other variances of logs greater than a given variance

- a + βz_i : errorless log CBR for the ith test condtion, a linear function of z_i
 - fij : a normal error variable with mean zero and standard deviation σ_{j}

$$\eta_{ij}$$
: a normal error variable with mean zero and standard deviation σ

In addition, it is assumed in model (*) that the 312 error variables ϵ_{ij} and γ_{ij} are uncorrelated except for a constant correlation between ϵ_{ij} and $\gamma_{i'j'}$ when i = i' and j = j'.

Figures 9, 10, 11, 12 and 13 suggest that the chosen model (*) is valid for the following reasons.

1. Figure 9 indicates that if a functional relation exists between "true" UCS logs and "true" CBR logs, then it is very likely to be a linear relationship.

2. Figures 10 and 11 show that it is not unreasonable to assume a constant variance for ϵ_{ii} and γ_{ii} .

^{3.} Figure 12 indicates that a constant correlation exists between ϵ_{ij} and γ_{ij} .

4. Figure 13 suggests that the normality assumption is not unwarranted. It indicates that, to within expected sampling variation, the log CBR and log UCS variances follow the chi-square distribution arising under normality.

Assuming the model (*) to be acceptable, it is now possible to proceed with the construction of a 5% test of the hypothesis

$$H_{o}: "a = a_{o}, \beta = \beta_{o}":$$

Compute

1.
$$\sum_{i j} \sum_{j} (Y_{ij} - \alpha_{o} - \beta_{o} X_{ij})^{2}$$

2. $\sum_{j} (X_{ij} - \bar{X}_{i.})^{2}/3 \equiv S^{2}_{X,i}$

$$\Sigma(Y_{ij} - \overline{Y}_{i.})^{2} / 3 \equiv S^{2}_{Y, i}$$

$$\Sigma(X_{ij} - \overline{X}_{i.})(Y_{ij} - \overline{Y}_{i.}) / 3 \equiv S^{2}_{X, Y, i}$$

3. $S^{2}_{X} = \Sigma S^{2}_{X, i} / 39$
 $S^{2}_{X} = \Sigma S^{2}_{Y, i} / 39$
 $S^{2}_{X, Y} = \Sigma S^{2}_{X, Y, i} / 39$

4.
$$\beta_{a_{o}}, \beta_{o} \equiv \frac{\sum \sum (Y_{ij} - a_{o} - \beta_{o} X_{ij})^{2}}{\sum^{2}_{Y} + \beta^{2}_{o} \sum^{2}_{X} - 2\beta_{o} \sum^{2}_{X}, Y}$$

Compare o

$$\int_{a_0, \beta_0}^{a_0, \beta_0} \text{ with } 117 + [F_{39, 117}(.05)][39] = K$$

$$\int_{a_0, \beta_0}^{a_0, \beta_0} K, \text{ accept } H_0$$

$$\int_{a_0, \beta_0}^{a_0, \beta_0} K, \text{ reject } H_0$$

If

If

The above is a 5% test for the following reason. Define

$$Z_{ij}(a_o, \beta_o) \equiv (Y_{ij} - a_o - \beta_o X_{ij})$$

Then

$$\int_{a_{0}, \beta_{0}} = \frac{\sum_{i=j}^{\Sigma} (Y_{ij} - a_{0} - \beta_{0}X_{ij})^{2}}{\sum_{Y}^{2} + \beta_{0}^{2}S_{X}^{2} - 2\beta_{0}S_{X}^{2}, Y}$$

$$= \frac{\sum_{i=j}^{\Sigma} Z_{ij}^{2} (a_{0}, \beta_{0})}{\sum_{i=j}^{\Sigma} \Sigma(Y_{ij} - \overline{Y}_{i.})^{2} + \beta_{0}^{2} \sum_{i=j}^{\Sigma} \Sigma(X_{ij} - \overline{X}_{i.})^{2} - 2\beta_{0}\sum_{i=j}^{\Sigma} (X_{ij} - \overline{X}_{i})(Y_{ij} - \overline{Y}_{i.})}{(3)(39)}$$

$$\sum_{i \in j} \sum \left[\overline{Z}_{ij}(a_{o}, \beta_{o}) - \overline{Z}_{i}(a_{o}, \beta_{o}) \right]^{2} + 4 \sum_{i} \overline{Z}_{i}^{2}(a_{o}, \beta_{o})$$

$$\sum_{i \in j} \sum \left[\overline{Z}_{ij}(a_{o}, \beta_{o}) - \overline{Z}_{i}(a_{o}, \beta_{o}) \right]^{2}$$

$$(3)(39)$$

$$= (3)(39) + \frac{4\Sigma \overline{Z}_{i.}^{2} (a_{0}, \beta_{0})/39}{\sum_{i j} \Sigma [Z_{ij}(a_{0}, \beta_{0}) - Z_{i.} (a_{0}, \beta_{0})]^{2}} (3)(39)^{2}$$

= 117 + (39) (a statistic distributed as $F_{39, 117}$ under H_0). Q.E.D.

The above procedure is a "least squares" method for solving for the parameters of the model that is symetric in X and Y. In other words, this method will give the same answer whether Y is thought of as being regressed on X or X on Y. This is a natural requirement in the present situation since both X and Y are subject to error. This method is related to previous work on this type of problem which has been described in the literature (11, 12, 13).

Since the minimization of $\beta_{\alpha,\beta}$ is much more difficult than the minimization involved in the usual least squares techniques, it was carried out by means of high speed computor. From the data thus obtained, it was found that min $\beta_{\alpha,\beta} = 2.73$. This value of 2.73 is an F-value well in excess of the 5% significance level. In fact, this value is very much in excess of the 1% significance level, thus leading to the assertion that the 99% confidence region for α,β is empty. This means that, at the 99% level, the model assumed for this data is not plausible.

The most suspect feature of the model (*) would seem to be the hypothesizing of a functional relationship between "true" UCS logs and "true" CBR logs. This then is a feature calling for re-examination. Actually, it is somewhat more reasonable to think of a set of functional relationships, each corresponding to variation of but a single factor level, forming a two dimensional configuration in the plane bounded by two envelopes. It follows that, unless one is willing to specify factor conditions rather exactly, it becomes rather difficult to bring rigorous statistics to bear on the problem of determining a confidence interval for CBR values corresponding to specified UCS values.

The above does not, of course, preclude the possibility of using to good advantage the strong correlation evidenced in Figure 9 at least until further investigation yields statistical recipes as functions of factor conditions. It is to this end that the following equation of fit is presented:

 $\log Y = 1.115 + .660 \log X$

where Y = CBR value and X = UCS value. The a and β values appearing in the equation, a = 1.115 and $\beta = .660$, are in fact the a and β values that minimize $\lambda_{a,\beta}$.

Engineering analysis of data

Figures 3 and 4 indicate the strength results obtained under varying conditions. As expected, strength values increased with increasing cement contents and increasing lengths of curing. In addition, as the length of curing increased, the rate of strength gain decreased. It is interesting to compare the immersed specimens with the unimmersed specimens. The immersed specimens had each an extra day of curing and as a result gained extra strength. On the other hand, the immersed specimens lost a certain amount of strength due to being immersed. For the 5% cement specimens the strength values are close to each other, indicating that the strength gained due to the extra day's curing is essentially nullified by the strength loss due to being immersed. With the higher cement contents, however, the immersion effect appears to be much more severe. It would seem as if this effect is mainly a function of length of curing. At low curing periods, immersion has little or no effect on strengths. At such times, the rate of strength gain is so fast that the extra day's curing tends to outweigh or balance the loss in strength due to being immersed. However as curing time increases, the rate of strength increase decreases and hence the strength loss due to being immersed is much more apparent.

From the statistical analysis of the data it appears that a true functional relationship, valid over a wide range of experimental conditions, does not exist between the unconfined compressive strength and the California Bearing Ratio. The equation, $\log CBR = 1.115 + 0.660$ log UCS does, however, provide, a working relationship that can be used for rough predictions in investigations involving sand-cement mixtures. In addition, it is very possible that a true functional relationship may exist between the CBR and UCS for a given experimental condition where only one factor is varied at a time e.g. if the soil, cement content and method of curing are kept constant and only the length of curing is varied. In this sense, the above equation-although it cannot be considered to be an estimate of a single true relationship-can be considered to be the "average" of many single factor relationships. If this be true, then it could be further hypothesized that a true relationship may exist between the CBR and the UCS of stabilized soils where the only variable is the soil type. In regarding this hypothesis, however, it should be kept in mind that soil type is not as well defined a factor as either cement content, curing time or method of curing.

A word deserves to be said regarding a strength criterion for sandcement. A commonly acception criterion is that of an immersed strength of 250 psi after 7 days moist curing (3). **B**ased on the results obtained in this investigation, it appears that a sand-cement mixture with an unconfined compressive strength of 250 psi has a California Bearing Ratio of about 500 percent. Similarly, a sand-cement mixture with a CBR of 120 percent has a UCS value of about 29 psi. These figures immediately suggest that a criterion of 250 psi for stabilized sand is unreasonable as it fails to take into account the inherent strength due to lateral confinement.

Part 2 - Detecting Outliers in a Large Series of Soil-Additive Strength Determinations

As mentioned before, he unconfined compressive strength test is probably the most commonly used test in soil stabilization investigations. The general procedure is, for one given test condition, to prepare and test several specimens, after which the average of the several strength values is reported. Three specimens per test condition are commonly used. Because of the many variables involved, the total number of specimens which may have to be tested may range from the hundreds to the thousands, depending upon the size and scope of the investigation.

Since such large numbers of specimens are involved, it is likely that some unconfined compressive strength results will be obtained that are, seemingly, not what they should be. The question then arises whether these unusual observations are the result of expected normal experimental variation, or whether they are due to an experimental or material aberration and should therefore be discarded. In cases where three specimens are prepared per test condition, a commonly used solution to this question is to discard any single measurement which deviates by more than ten percent from the average of all three measurements, as prescribed in ASTM "Method of Test for Compressive Strength of Hydraulic Cement Mortars" (2). In the event of such a disqualifying deviation, the average of the remaining two strength values is then reported.

It is felt that this blanket-type disqualifying percentage should be reappraised from a statistical point of view, since it is very possible that entirely valid triplicate unconfined compressive strength values may attain this percentage simply by virtue of expected statistical fluctuation. Thus many values may be unjustly disqualified. Since unjustly disqualified strength values carry information which is as valid as that carried by their supposedly more reliable neighbors, uncritical adherence to such a blanket-type disqualifying percentage causes needless loss of information. In addition, bias is introduced when any strength observation is wrongfully discarded.

Purpose of the study

In the previous experiment, there was detailed a test whereby outliers in a series of quadruple strength determinations-where each member of the quadruple came from a different batch-could be detected. The purpose of this phase of the investigation, therefore, was to present a procedure by which outliers in a series of triplicate strength determinations-where each member of the triplicate came from the same batch-could be detected. In addition, it is often desired to have some criterion by which to judge an investigation as a whole and therefore a method is given for examining a series as a whole for reliability, homogeneity and normality.

Disqualification test for triplicate studies

The statistical theory of the present approach requires the existence and the estimation of a constant coefficient of variation-abbreviated CVfor the entire series of observations. The CV of any observation equals the dispersion to which that observation is subject divided by the true value that the observation is supposed to estimate. It should be a constant for all the observations of a single investigation.

A simple nomographic procedure has been devised for establishing and estimating this constant CV.

Procedure for estimating the CV:

1a. For each set of triplicate unconfined compressive strength values, compute the ratio, r, of the range, R, of the three values to the average, \overline{X} , of the three values. The range is defined as the difference between the largest value and the smallest value of the three. Thus

 $r = \frac{R}{\bar{X}} = \frac{X_{max} - X_{min}}{(X_1 + X_2 + X_3)/3}$

1b. Arrange all the r values so obtained in ascending order of magnitude. This can easily be done by plotting them on ordinary graph paper.

1c. Choose approximately thirty well spaced r values. For each selected r value, find the number, n, of other r values less than it, add

1/2 to this, ^a and express this number as a percentage of the total number. N, of r values that is, compute

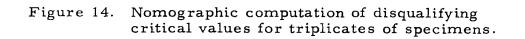
100(n + 1/2) / N

1d. Plot each percentage against its corresponding r values on the nomograph in Figure 14, using scale A for the r values and scale B for the percentages.

1e. Fit the thirty points so obtained with a straight line-hereafter called the CV line-passing through the origin. If the points lie reasonably close to the straight line, then constancy of the CV is established and the proposed test is applicable. (Questions of objective fit and closeness criteria are touched upon in the discussion).

Outliers, if present, will tend to unduly enlarge r. This will cause the r pattern to form an arched rather than straight line. In such cases, the points furthest from the origin should be excluded from the straight line fit. A technical though perhaps impractical refinement here is to eliminate far points until the remaining replotted points form a satisfactory straight line.

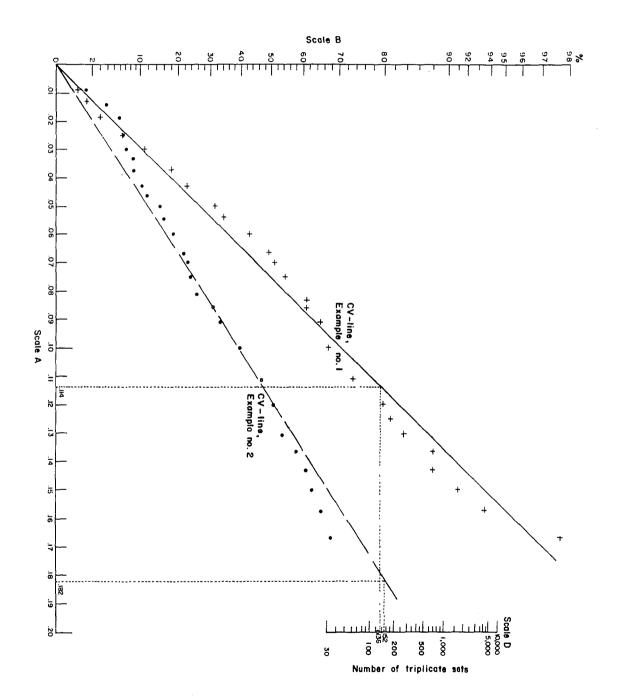
The CV itself is estimated by the value on scale A at which the CV line attains a height of 24 on scale B.


It might be noted that prior workers in this general area have worked with the assumption of a constant CV (14). In addition, a considerable number of experimental sets of data have been examined for constancy of the CV at the Iowa Engineering Experiment Station, and it has been found to hold in every case.

Upon the establishment and estimation of the constant CV, it is now possible to test for possible incorrect unconfined compressive strength values. The procedure is as follows:

Procedure for disqualification of extreme strength values:

2a. For each set of triplicate values compute the ratio U of the largest value (X_{max}) - the average value (\overline{X}) to the average value (\overline{X}) .


^aFor N values greater than 100, it is not necessary to add 1/2.

١

.

.

٤S

Thus

$$U = \frac{X_{max} - \bar{X}}{\bar{X}}$$

2b. For each set of triplicate values, compute the ratio V of the average value (\bar{X}) - smallest value (X_{\min}) to the average value (\bar{X}) . Thus

$$V = \frac{\bar{X} - X_{\min}}{\bar{X}}$$

2c. Enter scale D in Figure 14 at the total number of triplicate sets. Through this point draw a horizontal line until it intersects the CV line through the origin. Read on scale A the value t of the abscissa of this intersection point.

2d. t is the critical value for both U and V. Any triplicate whose U exceeds t should have its X_{max} discarded; similarly, any triplicate whose V exceeds t should have its X_{min} discarded. In other words the t value, when expressed in percentage form, is the disqualifying percentage for the investigation at hand.

It must be realized that, although the suggested procedure controls the rate of wrongful disqualifications, it cannot reduce this rate to zero. It is therefore possible that valid observations may be disqualified. Similarly, a certain number of outliers will not be detected. Wrongful disqualifications can occur either when all three members of the triplicate set are subject only to normal experimental variation or possibly because the two remaining values are, in fact, the illegitimate ones. The investigator seeking additional controls for errors of this type may wish to cross check the disqualifications suggested by the present procedure against the disqualifications suggested by the magnitude of the corresponding residuals from fitted regression functions (15). This cross check is a standard statistical test and is not further discussed in this study. Where, however, the cross check is not used, it is recommended that. if one observation is disqualified, the middle observation of the original three then be reported. If it should happen that both U and V are extreme for one triplicate set, the entire triplicate set should then be discarded.

Criterion for the reliability of the investigation as a whole

In some cases it may be of interest to check on the reliability of the investigation as a whole. This may be necessary for many reasons, such as suspected unreliability of the operator, non-normality, or inhomogeneity of the material under test.

Proposed reliability test:

3a. Arrange all the U values in ascending order of magnitude. This is most easily done by plotting them on ordinary graph paper.

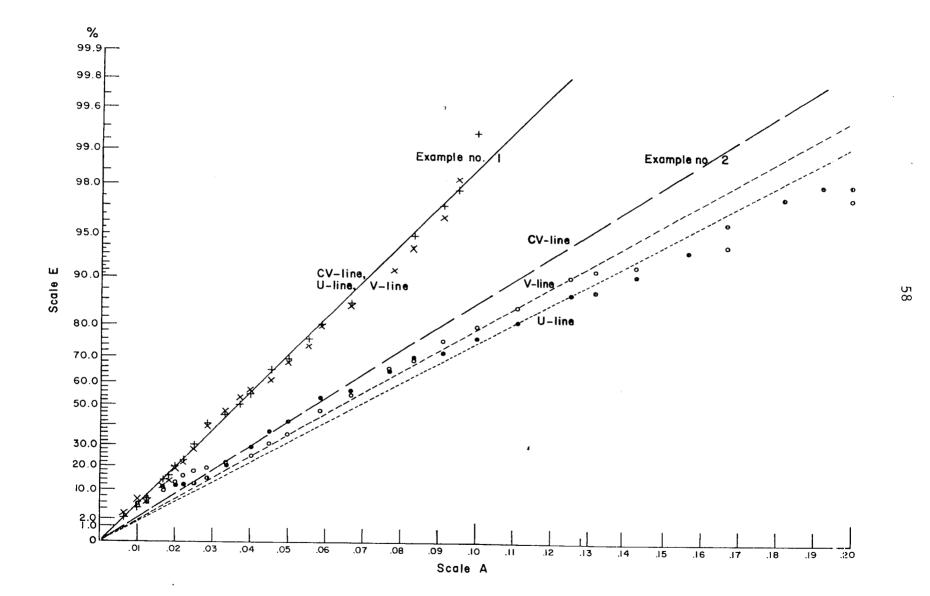
.3b. Select approximately thirty well spaced U values. For each selected U value, find the number of other U values that are less than the selected U value and express this number as a percentage of the total number of U values.

3c. Using the nomograph in Figure 15, plot on scale E each percentage obtained in 3b against its corresponding U value on scale A.

3d. Fit the points so obtained by a straight line-hereafter called the U line-through the origin.

3e. Similarly, do 3a, 3b, 3c, and 3d for V so as to obtain a V line.

The extent of non-coincidence of the three lines obtained in 1d, 3d, and 3e, and the extent to which the three sets of points fail to be fitted by the CV line, indeed the actual shape of the sets themselves, will provide clues concerning series-wide unreliability, inhomogeneity and non-normality. For example, inhomogeneity, in the sense of more than one underlying coefficient of variation, will cause the three sets to form similar "S" shaped curves, arching first downward then upward, the first arch typically being the more pronounced. This effect is similar to that arising under "inadvertent plot splitting" in halfnormal plot analyses (16), and is due to similar causes. Again, certain types of operator fabrication will manifest themselves in distinctive patterns. For example, fabricating a triplicate from a single determination by adding and subtracting fixed proportions of the single determination will cause a vertical discontinuity to appear in all three plots. On the other hand, fabricating a triplicate from a pair of determinations by interpolation will cause a configuration similar to but typically less extreme than that arising under inhomogeneity.


Should serious series-wide non-normality be uncovered, the clash of non-normal data with normal theory should, as a rule, be resolvable in favor of the theory. In other words, non-normality of data often will have an identifiable and removable cause.

Examples involving the use of the recommended procedures

To illustrate the use of the proposed techniques, data from two typical studies taken from the files of the Iowa State University Engineering Experiment Station were analyzed. The first example involved 134 triplicate sets of unconfined compressive strength determinations of soil-calcium lignosulfonate-aluminum sulphate specimens (17). The second example involved 152 triplicate sets of unconfined compressive strength determinations of soil-lime-sodium silicate specimens (18). The recommended procedures were applied to this data as indicated in Figures 14 and 15. The values and calculations upon which the example no. 2 graph is based are shown in Reference 18.

As shown in Figure 14, the estimated CV for the first example is 0.048, and the critical t is 0.114, corresponding to a disqualifying percentage of 11.4. None of the 134 triplets were disqualified by this criterion. As shown in Figure 15, the CV line and V line coincide, with the U points and V points falling close to this joint line. All indications therefore point to the fact that this investigator was in thorough control of his experiment.

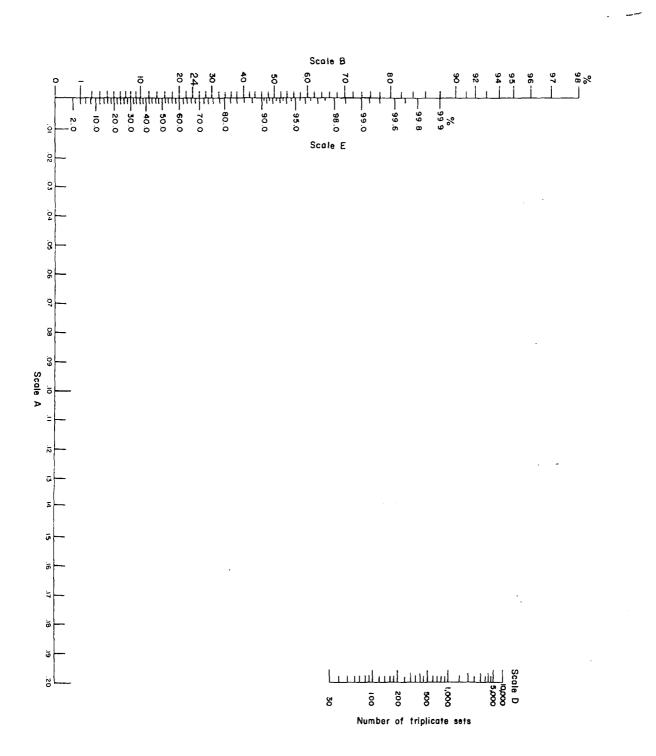
The estimated CV for the second example is approximately 0.074, indicating a degree of experimental precision lower than that of the first example. This lower precision probably does not represent an operator effect, but is probably due to the well known rapid jell-forming Figure 15. Nomographic assessment of series reliability.

ability of sodium silicate. Low precision does not by itself constitute evidence of experimental inefficiency but, as is likely in the present case, can be the result of inherent material properties. The critical t-value for this example is approximately 0.182, corresponding to a disqualifying percentage of 18.2. As regards the reliability check carried out in Figure 15, the CV line, U line and V line are seen not to coincide. Moreover, the U points and V points do not lie close to their respective lines. The tendency to downward curvature exhibited by both the U points and V points suggests the possibility of inhomogeneity of experimental material.

It is important to note that the critical percentage of 11.4 for the first experimental series is near the commonly accepted blanket percentage of 10%, which, parenthetically, is exceeded by 3 triplicate sets of this series. This 10% is also exceeded by 38 triplicates of the second series. Use of the critical percentage "tailor-made" to inherent experimental variability thus leads to a reduction in the number of disqualification in the case of both experimental series. These are, namely, zero versus 3 for example No. 1 and 18 versus 38 for example No. 2.

Note that the two types of nomographic computations shown in Figures 14 and 15 can be performed on a single nomograph. A sample of such a nomograph, called "Outlier Paper" is given in Figure 16.

Discussion


The Outlier Paper of Figure 16 is based upon the following facts. A. The ratio $\frac{r}{CV}$ has approximately the distribution of the range

of three unit normal deviates (19), and $\frac{U}{CV}$ and $\frac{V}{CV}$ have approximately the distribution of the largest minus the average of three unit normal deviates (20). Verifying computations indicate that these approximations are sufficiently exact as long as the coefficient of variation is less than 0.15. Scales A and B represent inverse probability transformations corresponding to the above two functions of unit normal variables (19, 20). The linearizing property of inverse probability transformations has been exploited before (16). Figure 16. Outlier paper for triplicates of specimens.

.

.

.

B. In view of the above, the cumulative distribution functions for r, U and V are straight lines through the origin and have slope of $\frac{1}{CV}$ when plotted on the outlier paper. This enables the CV line, which is in fact the estimated cumulative distribution of r, to yield critical values for U and V, i. e. to be used as if it were in fact the cumulative distribution function of U and V.

It is important to note that, ideally, the construction of the CV line should be based on a statistic that is as insensitive as possible to outliers, whereas the disqualifying percentage derived from this CV line should be applied to statistics that are as sensitive as possible to outliers. Triplicate observations may lend themselves only partially to these objectives if, as is assumed in this paper, both large and small outliers are involved. In view of this, the plot of the partially sensitive r values may show some downward curvature. In such cases, as has already been recommended, the CV line should be fitted on the basis of the r points less likely to be contaminated by the outliers, i. e. the r points closer to the origin.

In cases where it is known that only large outliers are present, an ideal insensitive statistic is the ratio of the difference to the mean of the middle and smallest observation.

C. The method of obtaining the disqualifying percentage is based upon the "multiple-comparison" point of view that experimental series not containing outliers, regardless of their length, should suffer no disqualification with probability 0.5. It is realized that other points of view regarding the question of risk will lead to different D scales.

It is of interest to note the manner in which the critical disqualifying values for U and V depend upon the total number of triplicate sets and also upon the constant coefficient of variation. When the number of triplicate sets increases, the critical t value increases, which means that the critical U and V values also increase. This follows from the present point of view regarding risk and may be explained by the fact that, since a greater number of triplicates are involved, natural experimental variation is expected to produce greater numbers of extreme U and V values. The critical t value also increases with increasing CV.

This is a reflection of the fact that the data are expected to be more erratic whenever the natural experimental error, of which the constant CV is a measure, is large.

Further theoretical considerations revolve about the manner of fitting the CV line and the manner of assessing the goodness-of-fit of the r, U and V points to this line. As a rule, an eye-fit will be adequate for the CV line, as other more sophisticated methods probably will not provide sufficiently greater accuracy to compensate for their greater computational complexities. A measure of goodness-of-fit is provided by the maximum vertical deviation, in units of percentage, of the thirty points from the straight line. This deviation may be approximately judged in terms of the known distribution of the maximum vertical discrepancy between a population CDF and its corresponding sample CDF (10). However this distribution theory should be taken only as a rough guide since (a) only thirty points of the sample CDF have been plotted, (b) the CDF to which this sample CDF is being compared is a fitted rather than a true CDF and (c) whatever outliers are present are actually contributing to the discrepancy between the two CDF's; alternatively, if one attempts to eliminate outliers by the refinement given in . 1e, maximum vertical deviations will arise that are considerably smaller than those expected according to the standard distribution theory.

Part 3 - Further Methods for the Control of Data Quality

Many are the problems confronting the soil engineering investigator who is about to begin a study. One problem always before him is how many specimens should he prepare per test condition. Some investigators like to use four specimens and this, of course, poses the problem of how to detect outliers in the results obtained from their studies. Since large experiments-such as the cement-fly ash one described in Reference (21)-are carried out over a long period of time, there is always the to-befeared possibility that certain time-associated biases, perhaps due to operator or apparatus deterioration, may creep into the work and thus taint the results.

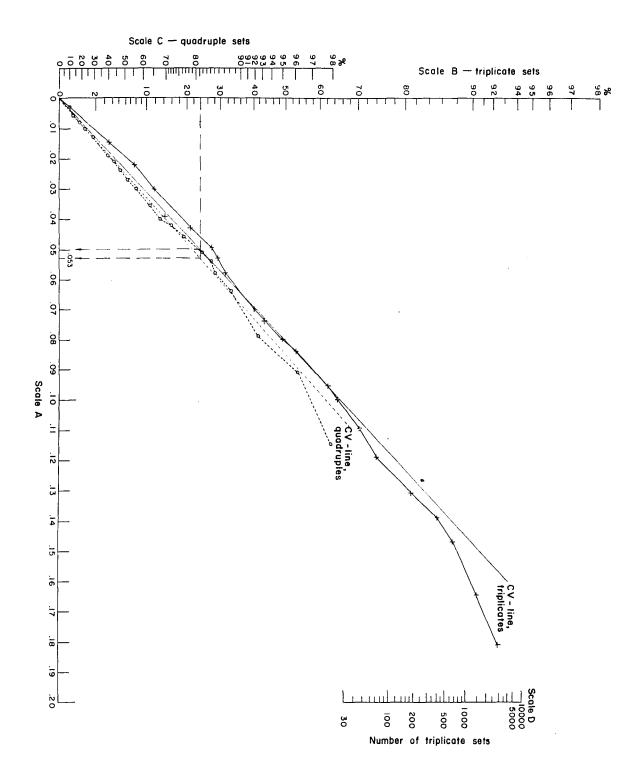
These are but a few of the problems and decisions confronting the investigator. It cannot be expected of him that he can solve all of them correctly-it can only be hoped that he can know and minimize his errors.

Purpose of the study

The purpose of this investigative phase was to develop procedures that would be helpful to the soil engineer in overcoming some of these problems. The following is a brief listing of the items discussed.

- 1. Outlier test for studies involving four specimens per test condition.
- 2. The advantages-cum-disadvantages of using four, instead of three, specimens per test condition.
- 3. Method of selecting specimens so as to minimize timeaffected biases.
- 4. The use of control specimens in evaluating data quality.
- 5. The influence of inadequate preparation of the soil sample.

Proposed disqualification test for studies involving four specimens per test condition


As indicated in Part 2, the statistical theory of this approach requires the existence and the estimation of a constant coefficient of variation (CV) for the entire series of observations. The CV of any observation equals the dispersion to which the observation is subject divided by the true value that the observation is supposed to estimate. This should be a constant for all the observations of a single investigation. The following is a simple nomographic procedure for establishing and estimating this constant coefficient of variation.

Procedure for establishing and estimating the CV:

1a. For each set of quadruple unconfined compressive strength values, compute the ratio, r, of the range, R, of the middle two strength values to the average \overline{X} , of these two same values. Thus,

$$r = \frac{R}{\bar{X}} = \frac{X_2 - X_3}{(X_2 + X_3)/2}$$

Figure 17. Nomographic computation of disqualifying critical values for quadruples of specimens.

1b. Arrange all the r-values so obtained in ascending order of magnitude. This is most easily done by plotting them on ordinary graph paper.

1c. Choose approximately 30 well spaced r values. For each selected r value, find the number, n, of other r values less than it, add 1/2 to this^a, and express the resulting figure as a percentage of the total number, N, of r values-that is, compute

100(n + 1/2) / N

1d. Plot each percentage thus obtained against its corresponding r value on the nomograph given in Figure 17. Use scale A for the r values and scale C for the percentages.

1e. Fit the points so obtained with a straight line-hereafter called the CV line-which passes through the origin. If the points lie reasonably close to the assumed straight line, then constancy of the CV is established and the proposed test is applicable.

Obviously the construction of the CV line should be based on a statistic that is as insensitive as possible to outliers. With quadruple observations, almost complete insensitivity is achieved by using the above mentioned ratio of the difference to the average of the middle two observations. However some outliers may be present which may tend to enlarge r unduly. This situation will cause the r pattern to form an arched rather than a straight line. In such cases, the points which emphasize this arch i. e. the points farthest from the origin, should be excluded from the straight line fit.

The CV itself is estimated by reading the value on scale A at which the quadruple CV line attains a height of 24 on scale B.

Upon the establishment and estimation of the constant CV, it is now possible to check for possibly incorrect strength values.

Procedure for disqualification of extreme strength values:

2a. For each set of quadruple values, compute the ratio U of the largest value, X_{max} , minus the average of the middle two values to the

^aFor N values greater than 100, it is not necessary to add 1/2.

average of the two middle values. Thus

$$U = \frac{X_{\max} - X}{\overline{X}}$$

2b. For each set of quadruple values, compute the ratio, V, of the average value of the middle two values, \overline{X} , minus the smallest value, X_{\min} , to the average of the middle two values, \overline{X} . Thus

$$V = \frac{\overline{X} - X_{\min}}{\overline{X}}$$

2c. Enter scale E at the total number of quadruple sets. Through this point draw a horizontal line until it intersects the CV line through the origin. Read on scale A the value, t, of the abscissa of the intersection point.

2d. For both U and V, this t value is the critical value. Any quadruple whose U exceeds t should have its X_{max} discarded; similarly any quadruple whose V exceeds t should have its X_{min} discarded. In other words, the t value-when expressed as a percentage-is the disqualifying percentage for the investigation at hand.

It is recommended that if the U and/or V value(s) are suspected of being extreme by this procedure, that the average of the middle two observations be then reported. If neither the U or V value is suspected, then the average of all four values of a set should be reported as being the "true" value.

This method of obtaining the disqualifying percentage is based upon the "multiple comparison" point of view that experimental series not containing outliers, regardless of their length, should suffer no disqualification with probability 0.5. In other words, if the series is entirely clean and no outliers are present, there is a 50/50 chance that no data will be disqualified.

The disqualifying percentage, i.e. the critical disqualifying values for U and V, depends upon the total number of quadruple sets and also upon the constant coefficient of variation. When the number of quadruple sets increases, the critical disqualifying percentage-that is the t value-also increases. This coomingly odd fact can be explained by the fact that since a greater number of quadruple sets are involved, greater numbers of extreme but valid U and V values can be expected because of natural experimental variation. In addition, the critical t value also increases as the CV increases. This can be explained by the fact that the data are expected to be more erratic wherever the natural experimental error, of which the constant CV is a measure, is large.

<u>Discussion</u> This section describes a method of detecting outliers in series of strength determinations involving quadruples. In Part 1 there was also described another method of detecting outliers in a series involving quadruples. The question then naturally arises as to why two methods are presented and what are the relative merits of each.

To clearly understand this, it is necessary to look at both methods of obtaining data. In the UCS-CBR work, members of a quadruple were obtained-at the same factor level-from different batches. As a result, it is necessary to have a technique to detect outliers that makes no assumption as to how the variance varies on the basis of μ . This is what was done in this case and as a result the proposed method has the added effect of being able to detect any "split-plotting" as expressed by $(\mu-\mu--\mu)$.

The above is not true for the problem discussed in this section, where all four specimens came from one batch. Since this method is not expected, and is not able, to detect any batch to batch differencebut rather is a measure of any man or machine measurement error during the course of the experiment-the assumption is made that the variance is a known function of μ times an unknown constant. This can be written in the form

$$\sigma^2 = K \mu^2$$

This unknown constant is the $(CV)^2$ when the known function is μ^2 . It is the variance if the known function is 1. This assumption does not

include the situation where the variance is made up of two componentsone of which is subject to a constant CV and the other to a constant variance-as illustrated in the UCS-CBR method. In that problem, the members of each quadruple, although independent, were subject to both a within and a between-batch component. In that case, the variance can be expressed in the form

$$\sigma^2 = A + B \mu^2$$

where both A and B are unknown. This obviously is not of the form

$$\sigma^2 = K \mu^2$$

as illustrated in this section.

As of now, a technique has not been developed which is suitable for both types of problems. Hence it is necessary to present both methods of analyses.

Observations on the number of specimens per test condition

A problem always confronting the research engineer is how many specimens should he use per test condition. Obviously, the more he uses, the more confident he is of his data and conclusions. However, practical economics dictate that he keep the numbers as low as possible. In large soil engineering studies involving the unconfined compressive strength test, it is common practice to prepare at least three specimens per test condition. One could argue that if three specimens give good results, then four would be better and it would not be too much trouble to prepare an extra specimen per test condition. Five or more specimens would, of course, be even better still, but use of these numbers could increase the burden of work in a large investigation by tremendous amounts. Hence it was decided to use four samples as a comparison with three samples in order to determine if the extra sample increased precision by a worthwhile amount. Since the CV is an indirect indication of precision, it is used as a basis for comparing the two sets of values.

·

To provide an illustrative example for this study, an experiment was devised which involved two soils, three percentages of a portland cement, and four percentages of each of three different fly ashes. The non-statistical analysis of this experiment is described in reference (21). For each combination of soil, cement and fly ash, four specimens were prepared and compacted at their optimum moisture content for maximum density. In order to determine the CV for the series, use was made of the nomograph described in Figure 17 and the procedure as detailed for quadruples. The CV line that was obtained is shown as the dotted line in Figure 17. The strength values and calculations upon which this line is based are shown in Appendix B. A method has already been described in Part 2 by which outliers can be detected in a series of soil-additive strength determinations involving three strength values per test condition. The suggested procedure is very similar to that described here for quadruplets, except that the statistic used in establishing the triplicate CV is

$$\frac{x_1 - x_3}{(x_1 + x_2 + x_3)/3}$$

and that for the quadruple CV is

$$\frac{x_2 - x_3}{(x_2 + x_3)/2}$$

The nomograph devised for this triplicate test is also included in Figure 17.

In order to obtain triplicate data that could be legitimately compared with the quadruple data, one strength value was chosen at random from every quadruple and then discarded. The CV line for the "triplicate" sets was then determined as indicated by the solid line in Figure 17. The scales used in both nomographs in this figure were such that if both sets of data had the same CV, then their CV lines would fall on top of each other. As can be seen, they do not exactly coincide but fall very close to each other. The CV's determined for the triplicates and

quadruples are .050 and .053 respectively. Hence, it would seem that the extra precision gained by using four specimens instead of three is not worthwhile. This would especially be true in large investigations involving many hundreds of test conditions.

Method of selecting specimens so as to minimize inherent specimen differences due to time or other factors

Another factor which enters into unconfined compressive strength testing involves the selection of specimens in order to equalize inherent specimen differences due to time or other factors. For example, in a typical soil-cement investigation, it may be necessary to determine the unconfined compressive strengths of a particular combination of soil and cement after 7, 28 and 120 days. In such a case, it is common practice to prepare nine specimens from the one batch of soil and cement and place them in the curing chamber together. Then at the end of 7 days, three samples are randomly chosen and tested, three others after 28 days and the remaining three after 120 days. It is a wellknown fact that, as the specimens are being molded, the cement in the mixture is hydrating. Hence it is very possible-depending, of course, on the length of time it takes to prepare the specimens-that there may be significant differences between the last few specimens and those prepared at first; these differences may then be reflected in the strengths obtained after the specimens are tested. Oftentimes, random selection has the effect of equalizing these strength differences. On other occasions it does not do so. Certainly a method that is more reliable than chance is needed. In such cases, the following procedure is recommended.

1. Divide the nine specimens into three sets of three as indicated in Figure 18a. Call these sets, P, Q and R respectively. To each number within a set, assign a letter A, B or C as indicated.

Prepare a 3 x 3 "Latin Square" distribution for the letters A,
 B, C, as indicated in Figure 18b.

3. Taking note of the distribution in Figure 18b, select specimen A from set P, C from Q and B from R i. e. specimens number 1, 6 and 8. Then take B from set P, A from Q and C from R i. e. specimens 2, 4

				_			
Set	ч	Q	ĸ	-	А	В	(
Specimen Number	123	456	789	-	С	А	E
Letter	ABC	АВС	АВС		В	С	A
		(a)				(b)	

	Cu	ring T	ime		Cu	ring '	Time
	7	28	120		7	28	120
	day	day_	day		day	day	day
Specimen Number	1 6 8	2 4 9	3 5 7	Specimen Number	1 5 9	3 4 8	2 6 7
Sum of Specimen Numbers	15	1 5	15	Sum of Specimen Numbers	15	15	15
	(c)				(d)		

Figure 18. Combinations of specimen numbers that will minimize inherent specimen differences

and 9. Finally, the remaining specimens are C, B and A i.e. specimens 3, 5 and 7

The final division of specimens is then as shown in Figure 18c. As can be seen, this method of selection is based upon the fact that if the sum of the specimen numbers is the same for a given curing period then the sum of their strengths should be the same. As a result, their averages should be the same.

By examining Figure 18b again, it is also obvious that another combination is possible. This combination is indicated in Figure 18d.

In an investigation where it may be necessary to have three curing periods and four specimens to be tested at each curing period, it is not possible to get a perfect distribution. Of the twelve specimens, it is not illogical to believe that the first three are the least subject to variability if a time trend exists. Hence, it would probably be best to distribute the last nine specimens in the above indicated manner and then randomly assign specimens 1, 2 or 3 to each of the obtained combinations.

The use of control specimens in detecting outliers

In the earlier part of this section a method was presented by which outliers could be detected in a series of soil-additive strength determinations involving four specimens per test condition. In Part 2 there was also presented a similar treatment for studies involving three specimens per test condition. Necessary to both of these methods was the establishment of a constant coefficient of variation for the investigation. One of the basic assumptions underlying these procedures is that the strength values used in calculating the CV come from a single normal population of values. This may not always be true-in fact it is very possible that, in certain studies, two or more normal populations may be involved. This, of course, means that there is more than one CV for the study and, hence, more than one critical disqualifying percentage. If this be so, then the obvious question arises as to how one can determine whether such divisions exist. The following practical example indicates one way of doing this. <u>Example</u> To obtain data for this study, an investigation was undertaken involving many variables. As part of that study, some three hundred mixture-batches were prepared and three specimens were taken from each batch. Each batch was different from another by at least one of the following variables:

Soils - 2: a natural loess from western Iowa and an artificial mixture of sand and loess which, for reference sake, will be called the Colfax mix.
Cement type - 1: Type I Portland Cement
Cement contents - 3; 5, 8 and 11 percent.
Fly ash type - 3; each one from a different source.
Fly ash contents - 4; 0, 3, 6 and 9 percent

Moisture contents - 5; each moisture content was different for each combination of the other variables.

The specimens molded from these batches were all cured for seven days at the same relative humidity and temperature, before being tested in unconfined compression.

The preparation of these batches/specimens was routine, with the following exception. After every tenth batch was processed, a special batch-hereafter called a "control" batch-was prepared. Each of these control batches contained exactly the same amount of ingredients of the same cement, soil and water. Three specimens were prepared from each control batch, by the same operator, using the same compaction apparatus, procedures, etc. In all, twenty-seven of these control batches were prepared. The main reason for the preparation of these control batches, and hence the control specimens, was the feeling that if a constant CV did exist for the series as a whole, then certainly it would be reflected in the results obtained from the control specimens. Then, ideally, if the assumptions of one CV and one population are correct, the CV line for the main study should coincide with the CV line for the control specimens.

Using the afore mentioned procedures for triplicates the control specimen values and the main study values were plotted on the Outlier Paper as indicated in Figure 19. The values and calculations upon which main study graph is based are shown in Appendix C and those for

Sub-batch number	Individual strengths, psi	Average strength, psi (X)	Range (R)	$r = \frac{R}{\overline{X}}$	% of other r values less than the given r value + 1/2 n
1	1145 1142 1063	1117	82	.0734	49.99
2	1191 1040 1022	1084	169	.1559	98.15
3	1178 1142 1135	1152	43	.0373	35.18
4	1168 1155 1135	1153	33	.0286	24.07
5	1254 1149 1145	1182	109	.0922	64.81
6	1093 10 7 9 1060	1077	33	.0306	27.78
7	.1109 1109 1093	1101	16	.0145	5.55
8	1303 1227 1148	1226	155	.1264	79.63
9	1326 1208 1201	1245	125	.1004	72.22
10	1231 1181 1162	1191	69	.0579	46.29

Table 4. Data for control specimens that were tested in unconfined compression after 7 days moist curing and 1 day immersion.

Table 4 (Continued).

.

Sub-batch number	Individual strengths, psi	Average strength, psi (X̄)	Range (R)	$r = \frac{R}{\overline{X}}$	% of other values less than the given r value + 1/2 n
. 11	1221 1218 1181	1206	40	. 0332	31.48
12	1185 1096 1073	1118	112	.1002	68.52
13	1106 1102 1099	1102	7	. 0064	1.85
14	1273 1254 1099	1209	174	.1439	90.73
15	1135 1102 974	1071	161	.1503	94.44
16	1073 1052 1047	1057	26	. 0246	16.66
17	1152 1135 1106	1131	46	. 0407	38.88
18	1024 1020 1002	1015	22	. 0217	12.96
19	1180 1079 1036	1099	144	.1310	83.34
20	1224 1086 1063	1124	161	. 1432	87.03

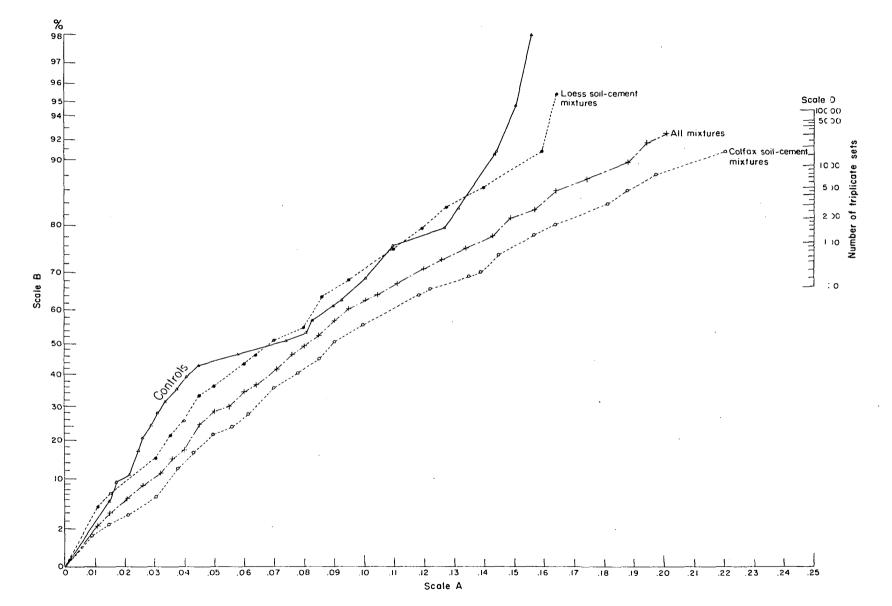
Table 4 (Continued).

.

Sub-batch number	Individual strengths, psi	Average strength, psi (X)	Range (R)	$r = \frac{R}{\bar{X}}$	% of other values less than the given r value + 1/2 n
21	1310 1300 1277	1295	33	. 0255	20.37
22	1290 1218 1191	1233	99	. 0803	53.70
23	1399 1389 1376	1388	23	.0166	9. 26
24	1288 1270 1185	1248	103	. 0825	57.40
25	1221 1122 1096	1146	125	. 1091	75.92
26	1293 1244 1237	1258	56	. 0445	42.59
27	1280 1198 1171	1216	109	. 0896	61.11

the control plot are shown in Table 4. The control specimen values torm a rather irregular line due to the paucity of data. Hence it is rather difficult to estimate exactly where the CV line for the controls is located. However, one factor is quite clear-that there is little relationship between the control line and the modified cumulative distribution line (CV) obtained when <u>all</u> the mixture values were plotted. This automatically leads to the conclusions that the control CV line is not the same as the CV line that would be obtained from all the data.

In endeavoring to discover the exact cause of this non-coincidence, one of the first thoughts was that, perhaps, the difference between the soils was being reflected. As a result, the data was divided on the basis of soil type and replotted. These plots are shown in Figure 19 also. It is quite clear that this division has a significant effect on cumulative distribution lines. That plotted for the loess mixtures showed a definite upward movement to fall very close to the controls' cumulative distribution line, while the Colfax mixture results showed a definite movement in the opposite direction. However, this cannot be assumed to be the sought-after division, as the control specimens were all prepared from mixtures containing the Colfax soil-and not the loess soil.


In order to find the correct line of division, the data was further divided in many ways, such as type of fly ash, fly ash content, etc. While all of these caused minor changes, none was accepted as being adequate. Finally the data was divided in the following manner, and this is believed to be the correct division.

There is a phenomenon, well known in soil engineering, called the Moisture-Density Relationship (22). If a given amount of moisture is contained in a soil mixture and a given compactive energy is applied to that mixture, a certain density-usually expressed in pounds of dry soil per cubic foot-is obtained. If a little more moisture is added to the mixture and the same compactive energy is applied, the dry density will usually increase. As more and more moisture is added, and the same compactive effort applied each time, the dry density will keep increasing until a maximum value has been obtained, after which it will start to decrease. Now, using the moisture-density curves obtained

Figure 19. Illustration of the use of control specimens in determining if a constant CV exists for a series of strength determinations.

.

.

for every combination of soil, cement and fly ash, the strength values were divided on the following basis: those that were obtained from specimens compacted at moisture contents at or below optimum moisture content for maximum dry density were placed in one population and those compacted at moisture contents above the optimum were placed in another. By pure coincidence, it turned out that very close to half the specimens were in each category. These data were then plotted on the Outlier Paper and are shown in Figure 20.

It is quite evident in this figure that this separation is very valid. There is a definite division between the cumulative distribution lines for the below optimum strength values and the above optimum ones. The respective CV's as a result are .05 and .08. As a further check, the data was again subdivided on the basis of the other variables, but the resulting changes in the CV's were deemed insignificant. The further subdivision on the basis of soil type is shown in Figure 20 also. Using the estimated CV lines, a disqualifying percentage of 11.2 was found for the below optimum data and 17.6 for the above optimum data. These values caused 5 sets to be suspected from the below optimum data ones and 16 sets from the above optimum ones. After elimination of these suspect sets, the remaining ones were replotted on the outlier paper. These plots are shown in Figure 21. In this figure, both CV lines show definite straightening tendencies. Particularly is this noticeable with the below optimum values as the line entwines itself about the control distribution line. The above optimum values also show this straightening tendency but make little effort to align themselves with the controls.

The use of control specimens in evaluating the uniformity of materials during the investigation

One of the main causes of conflicting data is many large soil engineering investigations is believed to be that of inadequate preparation of the soil sample prior to testing. After the soil has been carried to the laboratory from the field, it is of course axiomatic that it should be thoroughly mixed before being used. Oftentimes, investigations may

Figure 20. Nomographic computation of the CV for specimens divided on the basis of their being above or below optimum moisture content for maximum density.

.

.

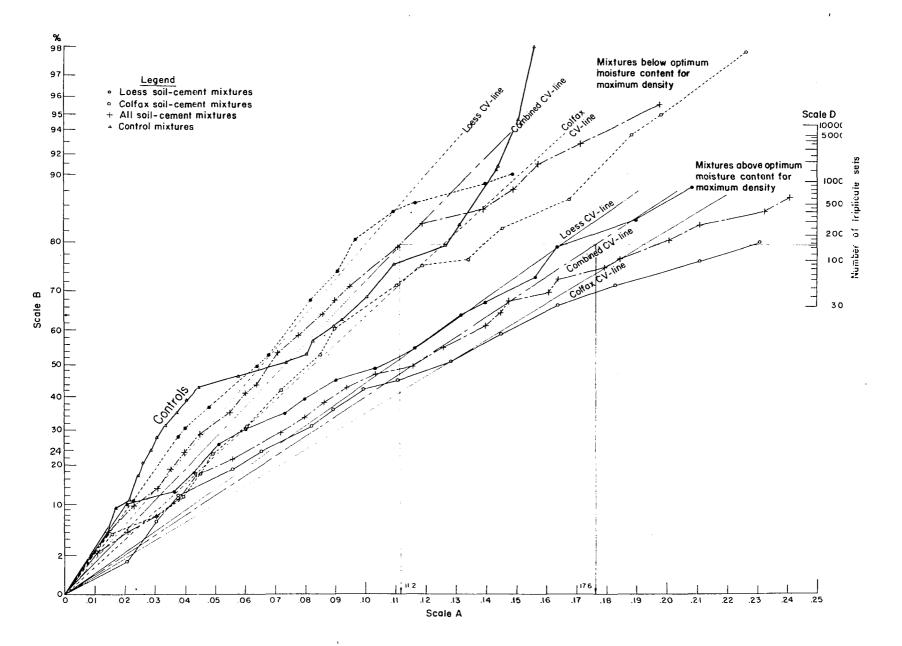
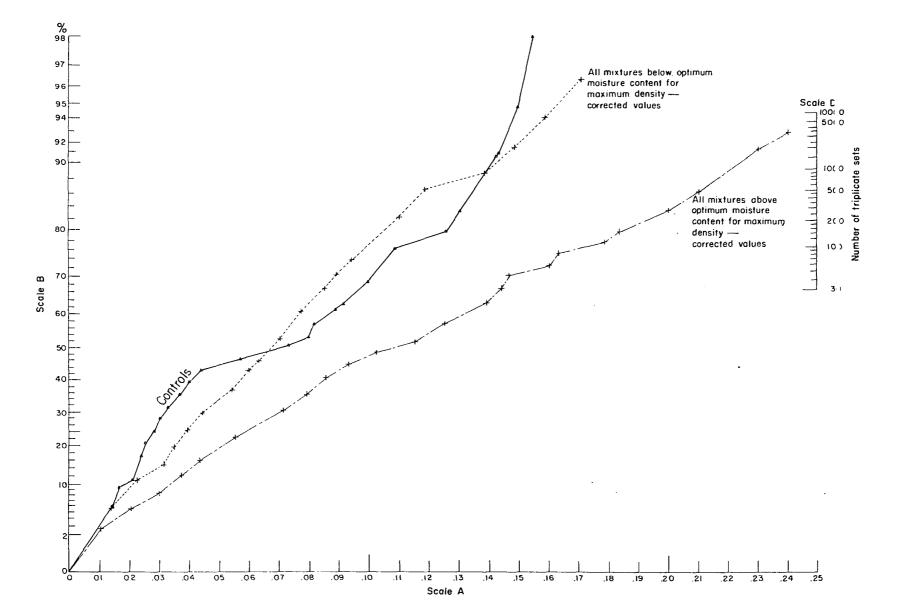
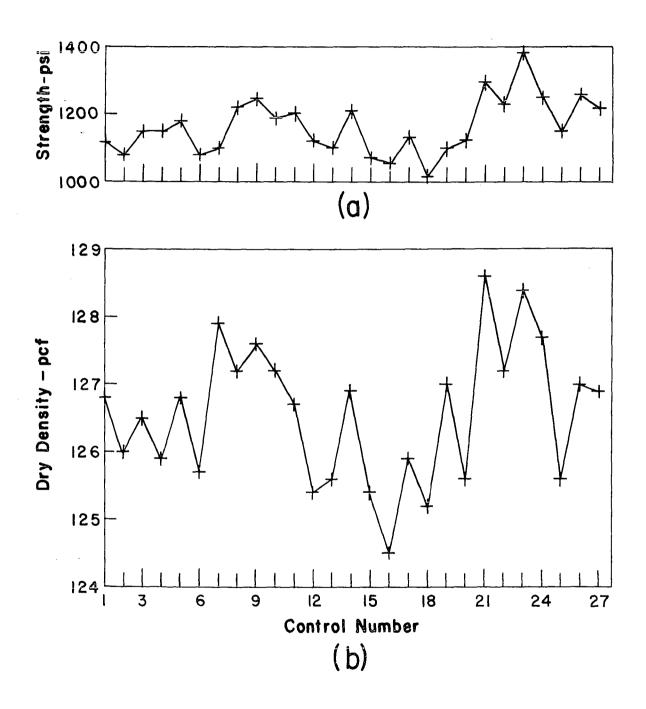



Figure 21. Corrected nomographic computation of the CV for specimens divided on the basis of their being above or below optimum moisture content for maximum density.

.

be carried on over the period of many months-perhaps even years. Over these long periods of time, differential settlement of particles may take place within the stored soil sample. Thus, the soil that is used at the beginning of the study may not be the "same" as that used towards the end. To illustrate this, the following example is cited.

Example The discussion previous to this illustrated the use of controls in detecting outliers. One of the soils used in that study was an artificial mixture of sand and loess known as the Colfax mix. This material had originally been thoroughly mixed but, at the time of this investigation, had been lying undisturbed in a bin for approximately $1 \frac{1}{2}$ years. As it was suspected that differential settlement might have taken place within the mixture, the sand-loess mass was not given a thorough re-mixing before being used. As already mentioned, control batches containing the same ingredients were prepared during the course of the investigation. In all, twenty-seven of these batches were prepared, from each of which came three specimens. Figure 22a is a plot of the average densities obtained with these controls versus the batch numbers from which these densities came. Figure 22b is a plot of strengths versus control numbers for the same specimens. The greater the control batch number, the farther down the bin the material for that particular batch was obtained. In both figures, there are definite fluctuations that seem to occur in cycles rather than chance. Since the same apparatus was used in preparing the specimens and since the one operator was judged to be skilled at his work, the most logical conclusion is that, in this case, these cyclic differences are due to material non-uniformity.


To avoid these material differences, the following recommendations are given.

1. Sample sufficient soil as is believed will be needed for the entire specific investigation.

2. After the original large soil sample has been brought to the laboratory and pulverized, sieved, etc. as required, it should be very thoroughly mixed.

3. After this thorough mixing, the soil sample should then be randomly divided up into batches. Each batch should not contain more

Figure 22. Illustration of the use of control specimens in detecting non-uniformity of experimental materials.

.

than 30 to 40 pounds of material. These batches should then be boxed, covered and laid aside until needed.

4. As the study proceeds and soil is required, a box should be selected at random and the material in it should be thoroughly re-mixed before being used.

Since many stabilizing additives to soils may differ within themselves depending on their source etc. -it is axiomatic that a sufficient amount of the required additive should be at hand for the entire investigation. This additive should also be thoroughly mixed, batched and placed in sealed containers. If the additive is such that time affects its potency, this must be taken into account. Control specimens of the type already discussed can very easily be used to detect any such potency change.

In certain cases, having taken care of as many other areas of variability as possible, it may be desirable to check on the efficiency of the investigation operator. This can also be very easily done with the aid of the control specimens. A plot, then, of densities versus batch numbers, or strengths versus batch numbers, will clearly bring out any consistent erraticity of the operator.

Part 4 - Detecting Outliers in a Small Series of Soil-Additive Strength Determinations

Oftentimes, when in need of some specific information, the soil engineering investigator may feel it necessary to prepare only a few mixture-batches. Two problems face him in this situation. First of all, how many specimens should he prepare and test per batch, and secondly-as soon as he has obtained the strength values-what criteria should he use to detect outliers.

The problem of the number of samples is not a new one. Basically, the more specimens tested, the more reliable the results. From a practical viewpoint, the choice of number of samples is dependent upon the degree of accuracy required. This problem has been extensively treated elsewhere and so is not further discussed here. Instead, reference is made to ASTM Designation: E122-56, which presents the recommended practice for "Choice of Sample Size to Estimate its Average Quality of a Lot or Process (23).

The problem of detecting outliers in this type of situation has also been extensively studied. Reference is made here to ASTM Designation: E178-61T which presents the recommended practice for "Dealing with Outlying Observations" (23). In this reference, two test criteria-each involving the use of the standard deviation-are presented. The first of these test criteria is as follows:

$$T_n = \frac{X_n - \overline{X}}{s}$$

where $T_n = a$ test statistic

- X_n = the highest and most suspect strength observation
- $\overline{\mathbf{X}}$ = arithmetic average of all n observations

$$s = \sum_{\substack{i=1\\ n-1}}^{n} (X_i - \overline{X})^2$$

If X_1 , the lowest value, rather than X_n , is the doubtful value, the criterion is as follows:

$$T_1 = \frac{\overline{X} - X_1}{s}$$

The critical values for either case, for the 1 percent and 5 percent significance levels, are given in a table in that reference.

A second criterion is also given for detecting outliers

$$T'_1 = \frac{\overline{X} - X_1}{\sigma}$$

or

$$T_n^i = \frac{X_n - \overline{X}}{\sigma}$$

This statistic is similar to the other except that σ is the known standard deviation as determined from independent sources, whereas s is an estimate of the standard deviation as determined from the present data. The critical values for T_1^i and T_n^i for the 5 percent and 1 percent significance levels, are also given in other tables in that reference.

Of these two criteria, obviously more confidence can be placed in the test criterion involving the known standard deviation, σ , as the estimate, s, is itself subject to contamination due to any possible outliers. However, from the point of view of the soil engineer, this is of little help as it is rarely in his work that the "true" standard deviation is known.

Purpose of the study

The purpose of this phase of the investigation was therefore to develop a more reliable criterion whereby invalid specimens in a small series of strength determinations involving the unconfined compressive strength test could readily and reliably be detected.

Proposed disqualification test

Three investigations have already been discussed intensively in this text, and, upon being examined, none of these three was found to have this constant standard deviation. Two of the studies-soil-calcium lignosulfonate (17) and soil-cement-fly ash-appear to have the essentially same coefficient of variation. The third, on soil-sodium silicate stabilization (18), had a different CV, but-as has been discussed earlier-this can perhaps be excused on the grounds of not being what might be loosely called a "normal" study. Another set of data (24) was also extensively examined and this turned out to have the same CV as the other two.

Based on this data, it appears that a constant CV exists for soil stabilization studies involving the unconfined compressive strength test and specimens compacted at or below optimum moisture content by the Iowa Compaction Apparatus. This CV appears to be equal to .050.

It is a known statistical fact that $\sigma = \overline{X}$. CV. Utilizing this fact, it is now possible to propose the following alternate, but powerful, outlier statistic for use in such soil stabilization studies:

$$\Gamma''_{n} = \frac{X_{n} - \overline{X}}{\overline{X}. CV}$$

or

$$\Gamma_1'' = \frac{\overline{X} - X_1}{\overline{X} \cdot CV}$$

The critical values for T_1'' and T_n'' for the 5 percent and 1 percent significance levels are given in Table 5.

An example of the use of this outlier test is now given.

Example involving the use of the proposed procedure As an illustration of the use of T_1'' and Table 5, consider the following four strength observations obtained during the course of the soil-cement-fly ash investigation: 678, 649, 625 and 540 psi. The doubtful value is $X_1 = 540$ psi. Then

$$\overline{X} = \frac{678 + 649 + 625 + 540}{4} = 637$$

CV = .050

Therefore

$$T''_{1} = \frac{X - X_{1}}{\overline{X} - CV} = \frac{637 - 540}{(637)(.050)} = \frac{97}{31.85} = 3.046$$

From Table 5, for n = 4 it can be seen that T_1'' as large as 2.16 would occur by chance with probability less than 0.05. In fact, for this particular illustration, it is clear that a T_1'' as large as 2.62 would occur by chance with probability somewhat less than 0.01. Thus the weight of the evidence is against the doubtful value as having come from the same normally distributed population as the other three.

Number of observations	At 5 percent significance level	At 1 percent significance level
3	1. 95	2.40
4	2.16	2.62
5	2.30	2.76
6	2.41	2.87
7	2.49	2.95
8	2.56	3.02
9	2.61	3.07
10	2.66	3.12
11	2.70	3.16
12	2.74	3.20
13	2.78	3.23
14	2.81	3.26
15	2.84	3.29
16	2.87	3.31
17	2.89	3.33
18	2.91	3.36
19	2.94	3.38
20	2.96	3.39
21	2.97	3.41
22	2.99	3.43
23	3.01	3.44
24	3.02	3.45
25	3.04	3.47

Table 5. Critical values of $T_1^{\prime\prime}$ and $T_n^{\prime\prime}$ when the coefficient of variation (CV) is known

^aThe critical values presented in this table are for the known σ condition and are excerpted from ASTM Designation: E178-61T (23).

•

Discussion

Two factors are worth noting about the proposed outlier statistic T_1'' or T_n'' . Firstly, it is a more reliable statistic than $T_n = (X_n - \bar{X})/s$ or its alternative T_1 . The estimated standard deviation "s" is itself subject to contamination as it is determined on the basis of <u>all</u> the observations, including any possible outliers. On the other hand, the new statistic is not subject to such an error as it utilizes the known coefficient of variation, which is determined independently. Secondly, the proposed statistic has an overwhelming advantage over the other in terms of ease of computation, as there is no troublesome calculation of the standard deviation.

In certain instances involving a rather large number of strength observations, it is very possible that two or more outliers may occur on the same side as \overline{X} . In such an instance, a practical expedient is first to apply the test criterion to the innermost outlier while dropping, temporarily, the other outlier(s). If this test leads to the rejection of the innermost outlier, then the others are automatically rejected with it. If the innermost outlier is not rejected, the same procedure is then reapplied on the next potential outlier. In this manner the outliers are detected, as it were, from the inside out. It should be noted, however, that the theoretical basis of the test is somewhat violated by this procedure; in practice, the effect will generally not be significant. Nevertheless, it will probably be better to use a lower significance level, as for instance, 1 percent instead of 5 percent.

In a situation involving outliers on both sides of \overline{X} , again a practical expedient is to use the test first on one side and then on the other, in each case dropping temporarily the outlier on the opposite side. In this situation, it is again recommended that a lower significance level, say 1 percent, be used.

Finally, note should be taken of the fact that the coefficient of variation, as determined from the nomographic procedures described in Parts 2 and 3, is only accurate for values less than 0.15. This, therefore, indicates that the procedure recommended in this section is only adequate for CV values less than 0.15.

Part 5 - Method for Evaluating the Reliability of a Curing Chamber and Any Operator Variability Due to Time Trends

In many investigations, soil-additive specimens have to be cured for long periods of time before being tested. For comparison purposes, they are generally placed in a curing room where the temperature and relative humidity are kept at constant values. It is obvious that the temperature and humidity should be checked at regular intervals-at least once a day-and any marked variations noted and taken into account when the data is being evaluated. This, of course, is usually done in most laboratories. One check that is often forgotten, however, is that significant temperature and humidity differences may occur within the curing room itself, e.g. from top shelf to bottom shelf or from front to back, etc.

Purpose of the study

The purpose of this study was to develop and present a method whereby reflections of any differences due to temperature and/or humidity within the curing room could be detected. Since, on most occasions, specimens are placed in a curing room so as to gain strength under controlled conditions, it was decided to use a strength criterion to detect any possible differential effects. In addition, a method is given for determining if there is any significant time trend being reflected as specimens are being prepared for testing.

Proposed test procedure

Control specimens can be used to detect any such differences. However, control specimens as specified in this instance are slightly different than heretofore. For this case, it is recommended that-at a particular time-three <u>separate</u> batches be prepared and one specimen taken from each batch. In other words when reference is now made to specimen 1a, it means the specimen taken from batch "a" at time period one, and 1b means the specimen prepared from the second batch, "b", prepared at the same time period, ctc.

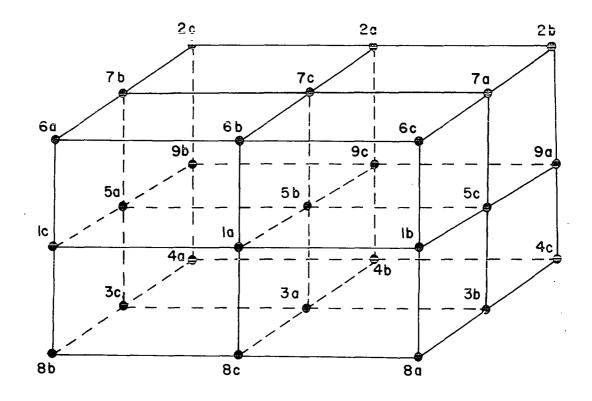
For a proper evaluation, care has to be taken that the internal differences within the control specimens do not predominate and thus cloak any possible curing room positional effects. This necessarily involves very careful location of specimens along the curing room wall. The manner in which this is done is illustrated in Figure 23. This necessitates the total preparation of 27 batches, prepared at 9 different time periods. Thus, the number 4b on the diagram indicates the location on the curing room wall of the specimen prepared from the second batch at the fourth time period.

The most important feature of the proposed test is this location of the specimens in the curing room. Examination of this diagram indicates a perfectly balanced arrangement. The specimens are so arranged that the sum of the specimen numbers in any plane is equal to the sum of the specimen numbers in any other plane. Thus theoretically, it can be assumed that, if no curing room differences exist, the strengths on any plane should be equal to-within, of course, expected sampling differences-the strengths on any other plane.

On the basis of the above, it is now possible-by virtue of the complete cross-balancing (or orthogonality) achieved by the experimental design-to perform valid F-tests in which the "numerator sums of squares" are the usual simple indices of effect. These simple F-tests for the curing room are as follows:

$$F_{\text{Height}} = \frac{\text{Mean square for height}}{\text{Error mean square}}$$

$$F_{\text{Width}} = \frac{\text{Mean square for width}}{\text{Error mean square}}$$


$$F_{\text{Depth}} = \frac{\text{Mean square for depth}}{\text{Error mean square}}$$

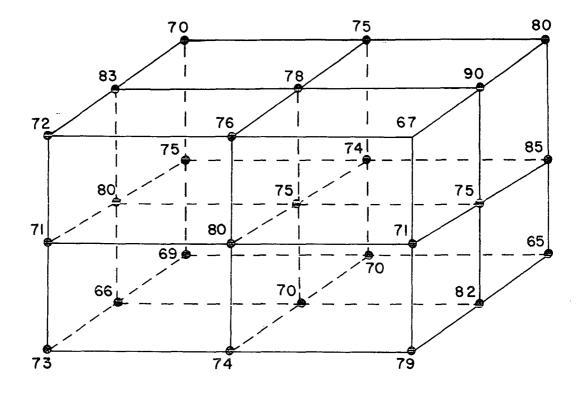

Figure 23. Location of specimens along the curing room wall.

Figure 24. Location of strength values along the curing room wall.

.

.

While performing these checks, it may also be desirable to check on any consistent errors due to time trends. These can be of two types. The first involves testing for any consistent differents between specimens made from batches prepared at the same time, e.g. between specimens a, b and c. The test for this is:

$$F_{Short} = \frac{Mean square for short time}{Error mean square}$$

Long term strength differences, as reflected by possible differences between specimens made from batches prepared a long time apart, i . e. consistent differences between batches prepared at time period one versus time period two versus time period three, etc., can be detected by the following test:

$$F_{Long} = \frac{Single degree-of-freedom mean square for time}{Error mean square}$$

An example involving the use of the proposed procedure is now given.

Example involving the use of the proposed procedure

To illustrate the method, mythical strength values were assumed. The locations to which these mythical values were assigned are shown in Figure 24. 3

$$MS_{Height} = \frac{\sum_{i=1}^{\Sigma} X_i^2}{\frac{9}{27}} - \frac{X^2}{27}$$

where $X_i = \text{sum of all 9 strength values obtained at height "i", and$ <math>X = sum of all 27 strength values.

Thus

Compute

(sum of all values in the top plane)² = $691^2 = 477481$ (sum of all values in the middle plane)² = $686^2 = 470596$ (sum of all values in the bottom plane) = 648 = 419904(sum of all 27 values)² = $2025^2 = 4100625$ $MS_{Height} = \frac{\frac{1367981}{9} - \frac{4100625}{27}}{2}$ = 61.5Similarly $MS_{Width} = \frac{\frac{3}{2} \times \frac{2}{11}}{\frac{9}{2} - \frac{2}{27}}{2}$ $= \frac{\frac{1367501}{9} - \frac{4100625}{27}}{2} = \frac{\frac{1367501}{9} - \frac{4100625}{27}}{2}$ = 34.75

and

Therefore

$$MS_{Depth} = \frac{\sum_{i=1}^{3} X_i^2 - \underline{X}_i^2}{9}$$

$$=\frac{\frac{1367739}{9}-\frac{4100625}{27}}{2}$$

Compute

$$MS_{Short} = \frac{2}{9} \frac{\sum_{i=1}^{3} x_i^2 - \frac{x^2}{27}}{2}$$

102

where $X_i = sum of all 9$ strength values obtained from "i" batches, X = sum of all 27 strength values.and Thus

(sum of all values from "a" batches)² = 700^2 = 490000(sum of all values from "b" batches)² = 685^2 = 469225(sum of all values from "c" batches)² = 640^2 = 409600

Therefore

$$MS_{Short} = \frac{\frac{1,368825}{9} - \frac{4100625}{27}}{2}$$

Compute

÷

$$MS_{Long} = \begin{pmatrix} 9 \\ \Sigma (T_i)(X_i) \\ \frac{i=1}{(3)(\Sigma T_i^2)} \end{bmatrix}^2$$

where

 X_{i} = sum of all three values obtained at time period "i", and $T_i = a \text{ coded time factor, varying from } -4 \text{ to } +4,$

Thus

$$\sum_{i=1}^{9} (T_i)(X_i) = \left[(-4)(80+71+70)+(-3)(75+80+70)+(-2)(70+82+66) + (-1)(69+70+65)+(0)(80+75+75)+(1)(72+76+67) + (2)(90+83+78)+(3)(79+73+74)+(4)(85+75+74) \right]^2$$

$$= \left[128 \right]^2$$

$$= 16384$$

and

$$(2)(2\pi_{i}^{2}) = (3(-4)^{2} + (-3)^{2} + (-3)^{2} + (-1)^{2} + (0)^{2} + (1)^{2} + (2)^{2} + (3)^{2} + (4)^{2}$$
$$= 180$$

Thus

$$MS_{Long} = \frac{16384}{180} = 91.02$$

Compute

$$MS_{Error} = \frac{\Sigma(Y-\overline{Y})^2 - SS_{Height} - SS_{Width} - SS_{Depth} - SS_{Short} - SS_{Long}}{17}$$

where Y = individual strength value,

 $\overline{\mathbf{Y}}$ = mean of all 27 strength values,

_

and similarly

$$SS_{Width} = (MS_{Width})(df)$$

$$SS_{Depth} = (MS_{Depth})(df)$$

$$SS_{Short} = (MS_{Short})(df)$$

$$SS_{Long} = (MS_{Long})(df)$$

Thus

$$\Sigma(Y-\overline{Y})^2 = (80-75)^2 + (71-75)^2 + \dots + (74-75)^2$$

= 642

Therefore

$$MS_{Error} = \frac{642 - (61.50)(2) - (34.75)(2) - (48.00)(2) - (70.80)(2) - (91.02)(1)}{17}$$

$$= 7.11$$
F-test,
$$F_{Height} = \frac{61.50}{7.11} = 8.66$$

$$F_{Width} = \frac{34.75}{7.11} = 4.89$$

$$F_{Depth} = \frac{48.00}{7.11} = 6.76$$

$$F_{Short} = \frac{70.80}{7.11} = 9.97$$

From tabulated values (25), $F_{2,17} = 3.59$ at the 95% level. All the above values are well above this value thus indicating that, for the assumed strength values, differences within the curing room and from batches a to b to c are significant.

F-test,

$$F_{\text{Long}} = \frac{91.022}{7.11} = 12.81$$

From tabulated values (25), $F_{1, 17} = 4.45$ at the 95% level. Thus, it

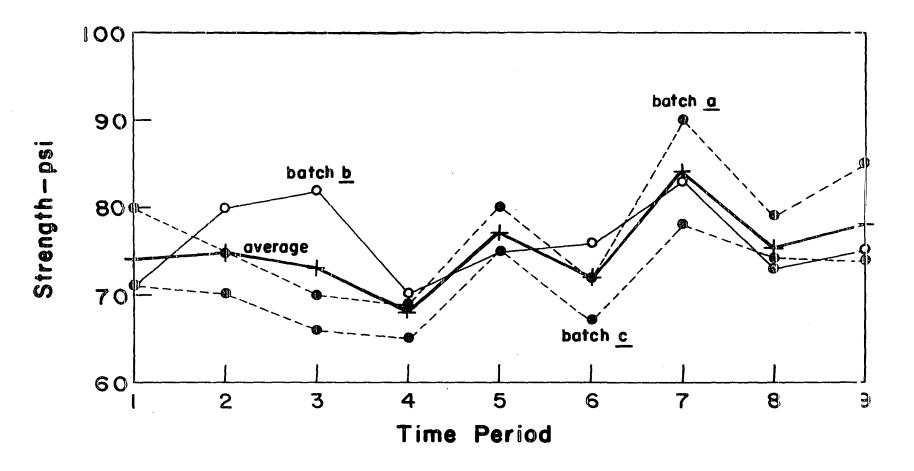
appears, that for the assumed strength values, strength differences due to long term time trends are significant.

Discussion

A few words should be said about some of the conditions upon which this test is based.

Firstly, the specimens must be arranged in balanced factorial form as indicated by Figure 23.

Secondly, this analysis is only applicable to situations involving homogenous error. In other words, only one type of error must be involved. For instance, in the above example, the only error allowed for was the batch to batch error for the 27 batches. Of course, this test would also be applicable to a situation involving 27 specimens where all 27 came from the one batch. In this situation, the only error allowed for would be the within-batch error, as there is now no between-batch error. Because of this requirement, this test is not applicable where the control specimens are prepared from the same batch as well as from different batches-as illustrated by the control specimens discussed in Part 3-as these strength values contain both a within-batch component of error and a between-batch component of error.


Thirdly, this test is only applicable to situations where any possible time trends are linear. If a time trend higher than linear-as illustrated by Figure 22 in Part 3-enters into the problem, non-orthogonality is created and this requires a more difficult analysis. The easiest way to check for non-linearity is to plot the mean of the strength values for each time period as a function of time and note-by eye-if there is nonlinearity. The plot of the mythical values assumed in the example is shown in Figure 25. Since it appeared as if there were no curve-linear changes in this graph, linearity was assumed in the illustrated example.

It is worth noting at this stage that Figure 25 indicates very clearly what has been proved by the statistical analysis. There appears to be a long term time trend and this was shown to be so by the analysis. Figure 25. Plot of mythical strength values as a function of time.

.

:

٠,

In addition-and more obviously-there is a short term time trend. Inis is very strongly indicated by the fact that the plot of specimens from the "a" batches is consistently higher than the plot of the "c" specimens, as both plots tend to be nearly parallel to each other.

SUMMART AND CONCLUSIONS

The primary purpose of this investigation was to provide some statistical procedures which would help the soil engineering researcher to control and evaluate his results. The following procedures were therefore developed and presented:

- Graphical method for detecting outliers in a typical correlation study. This method is applicable to studies where quadruples of specimens are prepared per test condition and where each member of the quadruple comes from a different batch.
- 2. Regression analysis for determining if a relation exists between two methods of testing a soil, when both methods of test are subject to error. This procedure is a "least squares" method that will give the same answer whether Y is thought of as being regressed on X or X on Y.
- 3. Graphical method for detecting outliers in a large series of soil-additive strength determinations involving triplicates of specimens. For this procedure, each triplicate set must come from the same batch.
- 4. Graphical method for determining the reliability-as a wholeof an investigation that involves large numbers of strength determinations. This method is only applicable to studies involving triplicates of specimens, where each triplicate set comes from the same batch.
- 5. Graphical method for detecting outliers in a large series of soil-additive strength determinations. This method is applicable to studies involving quadruples of specimens, where each quadruple set comes from the same batch.
- 6. Graphical method for determining the increase in precision when four specimens-instead of three-are used per test condition. In the example given, it was found that the extra precision gained by using four specimens was not worthwhile.

- Method for selecting specimens for testing so as to minimize inherent specimen differences due to time or other factors. This method is most applicable when the numbers of specimens prepared at the one time are such that their square roots can be obtained, e.g. 9, 16 or 25 specimens.
- 8. Methods-involving the use of control specimens-for evaluating the validity of an investigation involving large numbers of soiladditive strength determinations. These control specimens can be used to determine if all the strength values come from the one population, and, also to detect any material or operator variability throughout the investigation.
- 9. Some recommendations regarding the preparation of a soil sample prior to the actual investigations. These recommendations are primarily aimed at eliminating material differences throughout the study itself.
- Method for detecting outliers in a series of soil-additive strength determination involving small numbers of specimens. This method is only applicable to studies for which there is a known coefficient of variation.
- 11. Method for evaluating the reliability of a typical soil-additive curing chamber. This method is most useful in determining if there are reflections of temperature or humidity differences in various parts of the curing room itself. Until it is known whether such differences exist, it is recommended that all specimens for a particular investigation be cured in the same general area of the curing room.
- 12. Method for determining if there is any significant operator variability-due to a possible time trend-in a large series of soil additive strength determinations. This method is only applicable in situations where only homogeneous error is involved and where any possible time trends are linear.

The above procedures have been presented in as straightforward a manner as possible so that they may be useful to the soil engineering researcher who is not too familiar with statistical terminology. Although these methods have been presented under specific sub-titles and within specific situations, it is emphasized that they are intended to serve as prototypes for other similar types of soil engineering investigations.

FUTURE INVESTIGATION

The rapid growth of soil engineering-particularly soil stabilizationhas opened new areas in which statistical procedures are needed and should be applied. To attempt to list all of these areas would be impossible. However, future investigation could be broadly divided into the following three phases:

- 1. Evaluation of the reliability and reproducability of the standard soil engineering tests.
- 2. Development of procedures useful in the design of soil engineering experiments.
- 3. Development of methods of evaluating the results obtained in soil engineering experiments.

It is emphasized that any procedures developed in Part 3 cannot really be utilized to their utmost until Parts 1 and 2 are thoroughly taken into account.

BIBLIOGRAPHY

Literature Cited

- 1. Shewhart, W. A. Some applications of statistical methods to the analysis of physical and engineering data. Bell System Technical Journal. 3: 43-87. 1924.
- 2. American Society for Testing Materials. 1958 book of ASTM standards. Part 4. Philadelphia, Pa. Author. 1958.
- Davidson, D. T. and Handy, R. L. Lime and lime-pozzolan stabilization. In Woods, K. B., ed. Highway engineering handbook. pp. 21-98 to 21-123. New York, N. Y. McGraw-Hill Book Co., Inc. 1960.
- 4. American Society of Civil Engineers. Development of CBR flexible pavement design methods for airfields. Transactions, American Society of Civil Engineers. 115: 453-589. 1950.
- 5. Yoder, E. J. Principles of pavement design. New York, N. Y. John Wiley and Sons, Inc. 1959.
- Maclean, D. S. Considerations affecting the design and construction of stabilized-soil road bases. J. of the Institution of Highway Engineers (London). 3, No. 9: 16-33. 1956.
- American Society for Testing Materials. Committee D-18. Tentative method of test for determining the bearing ratio (CBR) of soils. (Mimeo.) Philadelphia, Pa. Author. 1959.
- Davidson, D. T. and Chu, T. Y. Some laboratory tests for the evaluation of stabilized soils. Unpublished paper presented at the 58th annual meeting of the American Society for Testing Materials, Atlantic City, N. J., 1955. (Mimeo.) Ames, Iowa. Iowa State University of Science and Technology, Engineering Experiment Station. ca. 1955.
- Hastings, C., Jr., Mosteller, F., Tukey, J. W. and Winsor, C. P. Low moments for small samples: a comparative study of order statistics. Annals of Mathematical Statistics 18: 413-26. 1947.
- Miller, L. H. Table of percentage points of Kolmogorov statistics.
 J. of the American Statistical Association 51: 111-121. 1956.
- Lindley, D. V. Regression lines and the linear functional relationship. J. of the Royal Statistical Society 9, Supplement: 235-237. 1947.

- Williams, E. J. Regression analysis. New York, N. Y. John Wiley and Sons, Inc. 1959.
- Aeton, F. S. Analysis of straight line data. New York, N. Y. John Wiley and Sons, Inc. 1959.
- 14. Waddell, J. J. Quality control in the construction industry. Industrial Quality Control 17, No. 7: 12-15. 1961.
- 15. Deming, W. E. Statistical adjustment of data. New York, N. Y. John Wiley and Sons, Inc. 1943.
- 16. Daniel, C. Use of half-normal plots in interpreting factorial twolevel experiments. Technometrics 1: 333-335. 1959.
- Demirel, T. Use of calcium lignosulfonate with aluminum sulphate for soil stabilization. Unpublished M. S. thesis. Ames, Iowa. Library, Iowa State University of Science and Technology. 1959.
- Ruff, C. G. Sodium silicate-lime stabilization. Unpublished M. S. thesis. Ames, Iowa. Library, Iowa State University of Science and Technology. 1960.
- Pearson, E. S. and Hartley, H. O. Biometrika tables for statisticians. Vol. 1. Cambridge, Mass. Cambridge University Press. 1956.
- 20. Nair, K. R. The distribution of the extreme deviate from the sample mean and its studentized form. Biometrika 35: 118-144. 1948.
- 21. O'Flaherty, C. S., Mateos, M. and Davidson, D. T. Effect of fly ash and sodium carbonate on soil-cement mixtures. Unpublished paper presented at the 41st annual meeting of the Highway Research Board, Washington, D. C., 1962. (Mimeo.) Ames, Iowa. Iowa State University of Science and Technology, Engineering Experiment Station. ca. 1962.
- Proctor, R. R. Fundamental principles of soil compaction. Engineering News-Record 111, No. 9: 245-248. 1933.
- 23. American Society for Testing Materials. 1961 book of ASTM standards. Parts 3-11. Philadelphia, Pa. Author. 1961.
- Remus, M. D. Strength of soil-lime mixtures at standard and modified A. A. S. H. O. densities. Unpublished M. S. thesis. Ames, Iowa. Library, Iowa State University of Science and Technology. 1959.
- Ostle, Bernard. Statistics in research. Ames, Iowa. The Iowa State College Press. c1954.

Additional References

Anscombe, F. J. Rejection of outliers. Technometrics 2: 123-147. 1960.

Basu, D. On statistics independent of a complete sufficient statistic. Sankhya 15: 377-380. 1955.

Daniel, C. Locating outliers in factorial experiments. Technometrics 2: 149-156. 1960.

Dixon, W. J. Analysis of extreme values. Annals of Mathematical Statistics 21: 488-506. 1950.

Kruskal, W. H. Some remarks on wild observations. Technometrics 2: 1-3. 1960.

Lieblein, J. Properties of certain statistics involving the closest pair in a sample of three observations. J. of Research of the National Bureau of Standards 48: 255-268. 1952.

Mateos, M. Physical and mineralogical factors in stabilization of Iowa soils with lime and fly ash. Unpublished Ph. D. thesis. Ames, Iowa. Library, Iowa State University of Science and Technology. 1961.

Ruben, H. On the moments of order statistics in samples from normal populations. Biometrika 41: 200-227. 1954.

Youden, W. S. Sets of three measurements. Scientific Monthly 77: 143-147. 1953.

ACKNOWLEDGEMENTS

The author wishes to express his very sincere appreciation to Dr. D. T. Davidson, Professor of Civil Engineering, for his valuable guidance and assistance throughout this investigation-and, in fact, throughout the writer's entire time at the Soil Research Laboratory.

Special thanks are due to Dr. H. T. David of the Department of Statistics for his very patient, and generous, assistance and encouragement throughout this study.

The helpful advice given by Dr. R. L. Handy, Dr. M. Mateos, Mr. T. Demirel and Mr. J. Wang are gratefully acknowledged.

Last, but far from being least, very many sincere thanks are due to the author's wife, Nuala, who gave so much assistance "with heart an' hand".

116-117

APPENDIX A

Tabulation of data used in the correlation study

Cement		Unconfine	d compi	ressive stre	ength values	·		Ca			Ratio values
content, %	Sub-batch number	Strength, psi	Gap	Adjusted gap	Largest gap 2nd largest gap (R _O)	% of other R _o 's < given R _o	Sub-batch number	CBR, %	Gap	Adjus ted ga <u>r</u>	Largest gap 2nd largest gap (R _O)
11	3 4 1 2	925 912 882 802	13 30 80	13 36.99 80	2.163	58	4 3 2 1	1140 1130 1097 990	10 33 107	10 40.686 107	2.630
	4 3 2 1	846 770 732 601	76 38 131	76 46.85 131	1.723	24.24	4 1 2 3	1295 1250 1085 1085	45 165 0	45 203.429 0	4.521
	1 2 3 4	797 747 350 329	50 397 21	61.65 397 21	6.440	93	2 1 3 4	1208 965 595 565	243 370 30	243 456.173 30	1.877
	1 2 3 4	769 756 579 547	13 177 32	13 218.22 32	6.819	95	2 4 1 3	1165 950 923 895	215 27 28	215 33.288 28	6.459
	2 4 1 3	610 563 425 410	47 138 15	47 170.14 15	3.620	80	2 4 1 3	726 700 677 638	26 23 39	26 28.357 39	1.375
	1 3 2 4	186 175 149 133	11 26 16	11 32.06 16	2.003	53	3 1 2 4	430 420 328 302	10 92 26	10 113. 427 26	4.362
11	1 4 3	1181 1032 955	149 77 208	149 94.93 208	1.396	28	2 3 4	1280 1225 1180	55 45	55 55.31	2.163

ω

1 2 3 4	431 355 320 313	76 35 7	76 43.15 7	1.761	45	3 1 4 2	837 830 808 740	7 22 68	7 27.124 68	2.507
1 3 4 2	394 354 322 320	40 32 2	40 39.45 2	1.014	2	2 4 3 1	760 720 687 680	40 33 7	40 40.586 7	1.017
3 4 1 2	392 389 381 359	3 8 22	3 9.86 22	2.230	60	4 2 3 1	612 596 585 490	16 11 95	16 13.362 95	5.937
4 3 2 1	404 312 297 281	92 15 16	92 18.49 16	4.975	89	4 2 3 1	613 613 560 495	0 53 65	0 65.344 65	1.005
3 4 1 2	300 263 226 198	37 37 28	37 45.62 28	1.233	18	3 4 1 2	567 552 500 452	15 52 48	15 64.Lll 48	1.336
2 4 3 1	160 157 156 150	3 1 6	3 1.23 6	1.103	9	4 2 1 3	442 404 375 357	38 29 1.8	38 35.754 18	1.063
ц 2 1 3	630 560 512 511	70 48 1	70 59.180 1	1.183	14	3 1 2 4	980 940 930 840	140 10 90	40 12.329 90	2.250

dicates that the specimens were immersed for 24 hours before being tested.

1	1	8
---	---	---

Continued)

Cement					ength values			Cal	liforn:	ia Bearing	Ratio values
ontent, %	Sub-batch number	Strength, psi	Gap	Adjusted gap	<u>largest gap</u> 2nd largest gap (R _o)	% of other R _o 's < given R _o	Sub-batch number	CBR, %	Gap	Adjusted gap	Largest gap 2nd largest gap (R _O)
8	1 2 4 3	536 525 492 471	11 33 21	11 40.686 21	1.937	52	4 3 2 1	891 867 855 810	24 12 45	24 14.''95 45	1.875
	2 3 1 4	545 520 500 410	25 20 90	25 24.658 90	3.600	80	1 3 2 4	940 870 780 780	70 90 0	70 110.961 0	1.585
	4 3 1 2	394 382 348 332	12 34 16	12 41.919 16	2.620	67	1 3 2 4	767 695 688 680	72 7 8	72 8.630 8	8.3 ⁴ .3
	2 1 3 4	382 351 331 331	31 20 0	31 24.658 0	1.257	20	3 2 1 4	667 652 650 610	15 2 40	15 2.1.66 40	2.667
	3 2 4 1	207 200 197 194	7 3 3	7 3.696 3	1.894	51	4 2 1 3	450 424 412 401	27 12 11	27 14.794 11	1.825
	3 4 1 2	137 130 128 113	7 2 15	7 2.466 15	2.143	57	2 1 3 4	295 281 260 250	14 21 10	14 25.891 10	1.849
5	3 4 1 2	171 152 135 132	19 17 3	19 20.959 3	1.103	9	4 1 3 2	367 335 308 265	32 27 43	32 33.288 43	1.292

3 4 1 2	137 130 128 113	7 2 15	7 2.466 15	2.143	57	2 1 3 4	295 281 260 250	14 21 10	14 25.891 10	1.849
3 4 1 2	171 152 135 132	19 17 3	19 20.959 3	1.103	9	4 1 3 2	367 335 308 265	32 27 43	32 33.288 43	1.292
1 2 3 4	164 164 160 130	0 4 30	0 4.932 30	6.083	92	2 3 1 4	370 358 330 300	12 28 30	12 34.521 30	1.151
4 1 3 2	157 133 110 <i>9</i> 4	24 23 16	24 28.336 16	1.181	14	4 1 3 2	346 309 290 215	37 19 75	37 23.125 75	2.027
3 4 1 2	144 141 90 63	3 51 27	3 62.878 27	2.329	62	2 3 4 1	320 310 302 217		aken irto ac er analysis	ecount for th
1 4 2 3	67 63 · 62 62	4 1 0	4 1.233 C	3.244	76	1 2 3 4	214 166 155 151	48 11 4	48 13.562 4	3.539
3 4 2 1	184 175 167 156	9 8 11	9 9.863 11	1.115	9	1 2 3 4	452 419 419 400	33 0 19	33 0 19	1.737
3 1 4 2	170 140 122 119	30 18 3	30 22.192 3	1.352	25	14 1 3 2	402 393 386 370	9 7 16	9 8.630 16	1.778
4 2 1 3	148 139 134	9 5 42	9 6.165 42	4.667	88	1 2 4	345 345 322	0 23 92	0 28.⊖57 92	3.244

3 4 2 1	184 175 167 156	9 8 11	9 9.863 11	1.115	9	1 2 3 4	452 419 419 400	33 0 19	33 0 19	1.737
3 1 4 2	170 140 122 119	30 18 3	30 22.192 3	1.352	25	4 1 3 2	402 393 386 370	9 7 16	9 8.630 16	1.778
4 2 1 3	148 139 134 92	9 5 42	9 6.165 42	4.667	88	1 2 14 3	345 345 322 230	0 23 92	0 28.357 92	3.244
4 3 1 2	109 102 100 83	7 2 17	7 2.466 17	2.428	64	4 3 1 2	327 320 300 278	7 20 22	7 24.658 22	1.121
3 1 2 4	80 75 72 69	5 3 3	5 3.699 3	1.352	25	3 1 4 2	249 246 237 232	3 9 5	3 11.)96 5	2.121
3 4 2 1.	25 24 23 23	1 1 0	1 1.233 0	1.233	18	1 3 2 4	74 68 63 63	6 5 0	6 6.165 0	1.027
1 2 3 4	41 39 37 29	2 2 8	2 2.466 8	3.244	76	1 2 3 4	128 128 120 117	0 8 3	0 9.363 3	3.288

APPENDIX B

·

· ·

Cement content,		ent,	Sodium carbonate	· .	_unc	onfine	d com		moist cured trength value				un	confin	led con		v moist cured strength valu	es,		
· · · • %	- go	Lab. no.	content, %	Indiv	idual ps		ths,	Average strength, psi	x =(x ₂ x ₃)/2	Range (R)	$r = \frac{R}{\bar{X}}$	Indiv	idual pa		ths,	Average strength, psi	x=(x₂x₃)/2	Range (R)	$r = \frac{R}{\bar{X}}$	
5 8 11	0 0 0		0	491 777 1162	491 711 1109	471 691 1053	465 678 1017	480 714 1085	481 701 1081	20 20 56	.0416 .0285 .0518	622 1043 1533	593 1007 1421	586 994 1388	520 941 1291	580 996 1408	589 1000 1424	6 13 33	.0102 .0130 .0232	
5	3 6 9	1	0	517 550 551	418 527 546	474 527 520	471 481 520	486 521 535	477 527 533	7 0 26	.0147 .0000 .0488	622 678 698	606 649 685	583 625 685	583 640 636	599 623 676	595 637 685	23 24 0	.0387 .0371 .0000	
8	36 936 9			551 876 724 846 1162 1284 1244	833 691 846 1147 1175 1241	809 678 820 1045 1171 1135	790 672 810 1019 1099 1122		821 684 833 1046 1173 1188	24 13 26 102 4 106	.0292 .0190 .0312 .0975 .0034 .0892	1132 1122 1195 1579 1681 1632	981 971 1179 1438 1622 1625	968 830 1109 1395 1606 1559	955 777 1060 1389 1527 1464	1009 925 1111 1450 1609 1570	974 900 1144 1407 1614 1592	13 141 70 43 16 66	.0733 .1567 .0612 .0306 .0099 .0415	-
5	3 6 9 3	3	0	530 543 461 853	481 514 399 688	468 481 386 685	428 435 359 659	477 493 401 721	474 497 392 667	13 33 13 3	.0274 .0644 .0332 .0045	718 721 1017	636 629 994	619 590 978	553 553 876	631 642 623 966	627 610 986	17 39 16	.0271 .0639 .0162	
11	569369		·	915 767 1329 1301 1261	872 714 1191 1291 1247	856 704 1145 1109 1247	853 685 1050 1109 1234	874 718 1179 1202	864 709 1168 1200 1248	16 10 46 182 0	.0185 .0141 .0394 .1517 .0000	1362 1181 1727 2013 2085	1277 1145 1681 1842 2049	1251 1079 1606 1681 2043	1201 1032 1500 1569 1944	1273 1110 1629 1779 2130	1264 1112 1644 1762 2046	26 66 75 161 6	.0206 .0594 .0456 .0914 .0029	
5	36 93	4	0	573 445 386 757	540 438 382 741	514 432 353 682	484 428 353 622	436 368	527 435 368 712	26 6 29 59	.0493 .0138 .0788 .0829	747 708 675 1095	744 698 645 1070	737 665 639 1026	724 652 616 991	738 681 644 1045	740 681 642 1048	7 33 6 44	.0095 .0485 .0093 .0420	

•

119

5 8	0 0.		0	257 422	244 399 560	228 386	228 379	239 396	234 . 392	16 _ 3	.0684 .0077	402 636	382 622	. 369 622	381 629	375 627	375 622	13 0	.0880 .0113
							•												
%	•	Lab. no.	content, %	Indiv	idual pa	streng i		Average strength, psi	x=(x₂x₃)/2	Range (R)	$\mathbf{r} = \frac{\mathbf{R}}{\mathbf{X}}$	Indiv	ridual ps	streng	tns,	Average strength, psi	x̄=(x ₂ x ₃)/2	Range (R)	$r = \frac{R}{\bar{X}}$
ontent,	cont	ent,	carbonate	Trate	unc	onfine	d comp	ressive st	rength value	es,		Train	unc	onfine	d comp	ressive st	rength value		
Cement	Fly	ash	Sodium			l day	immers	ed. 7 day	moist cured			· .]	. dav i	mmerse	d. 28 dav	moist cured,		
able 7b		ulati ss sc		used i	n dete	rminin	g the	coefficien	t of variat:	ion (CV)	for th	e stud	ly invo	lving	quadru	ples of st	rength deter	minatio	ons –
																· · · · · · · · · · · · · · · · · · ·	Υ		
5	3 6 9	4	0.5	619 474 609	603 458 590	596 438 567	593 425 530	449 574	599 448 579	20 23	.0117 .0046 .0397	912 724 1060	892 711 1040	872 705 1019	770 668 . 885	702 1001	708 1029	20 6 21	.0227 .0085 .1701
F	9	j.	0 5	705	685	652	632	668 603	668	33	.0494	1304	1291	1218	1122	1234 862	1254 882	73	.0582
5	3 6	3	0.5	780 764	727 718	701 685	688 639	724 701	714 701	16 33	.0224 .0471	1162 1251	1116 1247	1060 1198	1032 1139	1092 1209	1088 1223	56 49	.0515 .0401
-	6 9			662 662	645 649	630 639	590 619	631 642	638 644	15 10	.0235 .0155	103Ġ 1010	1022 1007	981 987	948 951	997 989	1001 997	42 20	.0420
8 11 5	0 0 3			855 1348 711	774 1317 691	747 1291 659	685 1093 632	765 1262 668	760 1304 675	27 26 32	.0355 .0199 .0474	1125 1908 1010	1086 1898 964	1032 1885 964	1010 1737 885	1064 1857 956	1059 1891 964	66 17 0	.0510 .0059 .0000
5	0		0.5	688	682	649	560	645	665	33	.0496	945	928	865	803	885	897	48	.0702
11	3 6 9			116 <u>5</u> 980 908	1132 967 899	1086 932 885	1066 922 774	1112 950 867	1109 749 892	46 - 35 14	.0415 .0467 .0157	1704 1497 1464	1671 1481 1329	1671 1405 1240	1556 1382 1181	1651 1441 1304	1671 1443 1285	33 54 179	.0000 .0527 .0693
8	.3 6 9			757 655 573	741 652 547	682 639 530	622 599 514	700 636 541	712 645 538	59 13 17	.0829 .0202 .0316	1095 1043 941	1070 1043 862	1026 1001 846	991 964 800	1045 1013 862	1048 1023 854	44 20 87	.0420 .0411 .0187
0	3 6 9	4	0	573 445 386	540 438 382	514 432 353	484 428 353	529 436 368	527 435 368	26 6 29	.0493 .0138 .0788	747 708 675	744 698 645	737 665 639	724 652 616	738 681 644	740 681 642	7 33 6	.0095 .0485 .0093
5																			

÷

9 444 484 484 478 485 484 0 .0000 813 754 751 768 754 0 .000 5 3 3 0 261 251 241 228 245 246 10 .0407 415 409 392 392 402 400 17 .047 6 267 267 267 264 266 267 0 .0000 9 307 303 287 284 295 295 16 .0542 507 507 495 465 493 501 12 .024 8 3 389 366 356 336 362 361 10 .0277 636 636 586 520 594 614 50 .083 6 405 389 359 356 375 374 30 .0802 688 682 678 672 680 680 4 .001				·····						·				· · · · · · · · · · · · · · · · · · ·					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0 .	0	422	399	386	379	396	392	3	.0077	636	622	622	629	627	622	Ó	.01
9 444 484 484 478 485 484 0 .0000 813 754 751 768 754 0 .000 5 3 3 0 261 251 241 228 245 246 10 .0407 415 409 392 392 402 400 17 .044 6 267 267 267 264 266 267 0 .0000 432 9 $307 303 287 284 295 295 16 .0542 507 507 495 465 493 501 12 .024$ 8 3 $389 366 356 336 362 361 10 .0277 636 636 586 520 594 614 50 .083 6 405 389 359 356 375 374 30 .0802 688 682 678 672 680 680 4 .000$	8	6 9 3 6 9	0	234 238 359 402 402	238 248 359 376 376	228 238 353 373 366	218 218 336 340 363	229 235 352 372 377	231 243 356 374 371	6 10 6 3 10	.0260 .0412 .0169 .0080 .0270	389 652 645 672	373 363 613 596 668	373 359 609 576 606	336 353 606 573 590	367 366 620 598 634	373 361 611 586 637	0 4 20 62	.13 ¹ .099 .07 ¹ .03 ¹ .09 ¹
6 267 267 267 264 266 267 0 .0000 432 9 307 303 287 284 295 295 16 .0542 507 507 495 465 493 501 12 .024 8 3 389 366 356 362 361 10 .0277 636 636 586 520 594 614 50 .081 6 405 389 356 375 374 30 .0802 688 682 678 672 680 680 4 .001		9		511 444	491 484	484 484	471 478	489 485	487 484	7 0	.0144 .0000	889 813	754	865 754	859 751	872 768	871 754	11 0	.012
9 415 405 402 399 405 403 3 $.0074$ 777 744 734 708 741 739 10 $.01$		6 9 3	0	267 307 389	267 303 366	267 287 356	264 284 336	266 295 362	267 295 361	0 16 10	.0000 .0542 .0277 .0802	507 636 688	507 636	495 586	465 520	432 493 594	501 614	12 50	.02
	5 8	3 4 6 9 3 6	0	280 221 202 369 343	271 218 197 366 336	271 215 192 363 326	262 182 188 336 323	271 209 195 359 332	271 216 194 364 331	0 3 5 3	.0000 .0139 .0258 .0082	382 373 369 576 550	382 366 369 576 520	366 366 363 557 504	356 323 359 553 501	322 357 365 566 519	374 366 366 567 512	16 0 6 19 16	.044 .000 .010
$egin{array}{cccccccccccccccccccccccccccccccccccc$	11	9 3 6 9		297 560 517 481	297 557 504 474	297 544 491 465	277 527 488 455	292 547 500 469	297 550 497 470	0 13 13 9	.0000 .0236 .0262 .0191	520 823 826 793	517 813 813 780	497 810 797 763	471 787 780 731	502 811 804 769	507 808 805 776	20 3 16 27	.039 .003 .019 .03 ¹
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 8 11	0 0 0	0.5	363 520 685	349 514 652	349 448 645	313 442 636	344 481 654	349 481 648	0 66 7	.0000 .1372 .0108	468 721 955	461 714 955	435 708 948	425 688 853	447 708 927	448 711 951	26 6 7	.058 .008 .00

Cement content, %	Fly ash content, % Lab.	Sodium carbonate content,	Indiv	unco	onfine	d com		moist cured, crength values
<i></i>	no.	%		ps:			strength, psi	$\bar{x} = (x_{\bar{2}}x_{3})/2$
5	3 4 6 9	0.5	359 353 323	346 340 320	343 336 310	343 326 307	348 339 315	345 338 315
5	3 1 6 9	0.5	359 389 379	349 379 379	343 376 363	320 369 349	343 378 368	346 377 371
5	3 3 6 9	0.5	382 415 455	373 392 445	363 382 425	356 379 392	368 392 429	368 387 435

Table 7b (Continued)

.st cured, <u>igth value</u> :(X ₂ X ₃)/2	s, Range (R)	$r = \frac{R}{\bar{X}}$	Indivi	unco	onfine streng	d comp		moist cured, crength value X=(X ₂ X ₃)/2	s, Range (R)	$r = \frac{R}{\bar{X}}$
	<u> </u>					•				
345	3	.0087	534	491	465	435	481	478	26	.0544
338	4	.0118	520	488	478	471	489	483	10	.0207
315	10	.0317	543	534	511	484	518	523	23	.0440
346	6	.0173	465	448	445	445	451	447	3	.0067
377	3	.0080	566	543	484	481	519	514	59	.1148
371	16	.0431	534	514	501	497	511	507	13	.0256
368	10	.0272	530	494	491	481	499	492	3	.0061
387	10	.0258	636	626	590	560	603	603	36	.059 7
435	20	.0460	659	659	652	593	640	655	7	.0107

APPENDIX C

,	Fly ash <u>conte</u> % la	1	mois	ling sture tent, type ^a	imme uncon	moist curd rsed, ind fined comp strengths psi	ividual pressive	Average strength, psi (X)	Ringe (R)
	0		10.7 12.2 11.2 9.9	A A A B	932 461 511 1145	833 432 488 1142	826 409 465 1063	864 434 488 1117	LOG 52 146 82
	Ο		9.2 10.9 9.9 11.2 10.3 9.6	B A B A B B	1050 567 846 425 761 754	1017 514 820 419 711 728	961 514 816 320 701 721	1009 531 827 388 724 734	89 53 30 LO5 60 33
	0		9.0 11 2 10.2 9.8 10.7 11.7	A B B A A	340 491 491 459 317	120 313 485 474 428 238	284 465 445 359 228	134 312 480 470 415 259	33 56 26 46 LOO 89
	3	3	11.1 10.0 9.4 11.2	A B A	626 770 731 405	570 737 724 329	488 649 701 320	561 719 719 368	L38 L21 30 85
	6		10.9 11.0 10.5 10.0 9.5	A A B B B	761 606 797 728 757	744 557 793 665 751	698 537 695 603 691	734 566 762 665 733	63 69 L02 L25 66
	9		11.6 11.5 10.8 10.5 10.0 9.3	A A B B B	494 468 737 803 754 770	415 468 682 767 751 728	409 468 678 685 701 665	439 468 699 752 735 721	85 0 59 L18 53 L05
	3	3	11.2 10.7 10 2 9.9 9.4	A A B B	547 908 1165 1237 1165	533 905 1093 1142 1152	527 767 1043 1135 1147	536 860 1100 1171	20 141 122 102

		10.5 10.0 9.3	B B B	803 754 770	767 751 728	685 701 665	752 735 721	L18 53 L05
3	3	11.2 10.7 102 9.9 9.4	A A B B	547 908 1165 1237 1165	533 905 1093 1142 1152	527 767 1043 1135 1147	536 860 1100 1171	20 141 122 102
6		9.4 11.3 10.9 10.4 9.9 9.4	A A B B	668 961 1139 1185	613 918 1073 1116	471 •777 987 1086	1155 584 885 1066 1129	18 197 184 152 99
9		9.4 11.4 10.8 10.3 9.9 9.0	B A B B B	1157 895 1145 1152 1102 1143	1047 816 1078 1145 1050 1010	922 793 994 1073 1043 928	1042 835 1072 1123 1065 994	235 _02 _51 _79 _59 _15
3	3	11.6 11.1 10.6 10.2 9.0	A A B B	280 346 435 507 481	257 343 415 474 438	238 327 399 465 419	258 339 416 482 446	L.2 19 36 L.2 62
6		11.5 11.0 10.6 9.9 9.0	A A A A B	317 376 474 471 432	294 369 461 468 427	277 354 458 451	296 368 465 463	40 1.7 1.6 20
9		9.0 11.5 11.3 10.5 10.2 9.0	A A A A B	432 290 396 494 520 478	427 267 356 465 491 465	419 251 330 445 474 442	426 269 360 468 495 461	13 39 66 49 46 36
9	l	11.5 11.1 10.8 10.1 9.0	A A B B B	349 396 520 573 547	290 356 484 566 524	284 274 478 563	308 342 494 568	65 : 22 42 10
6		9.0 11.4 11.2 10.5 10.1	A A A B	284 310 419 543	264 248 380 524	491 208 229 369 511	520 252 262 389 526	56 76 81 50 32

6	· · ·	10.8 10.1 9.0 11.4 11.2 10.5 10.1	B B A A A B	590 520 573 547 284 310 419 543	550 484 566 524 264 248 380 524	478 563 491 208 229 369 511	342 494 568 520 252 262 389 526	42 42 10 56 76 81 50 32
3		8.7 11.7 11.1 10.4 10.3 9.0	B A A B B	540 215 300 408 481 481	501 208 244 399 451 465	445 238 379 432 438	495 196 261 395 455 461	95 50 62 29 49 43
3	1	11.5 10.6 10.2 9.7 8.8	A A B B B	343 626 675 869 767	320 622 660 816 764	313 613 649 790 734	325 620 661 825 755	0 13 26 79 33
6		10.6 10.2 9.5 8.6	A B B B	737 846 875 691	728 839 780 685	682 836 662 649	716 840 773 675	55 55 10 213 42
9		10.9 10.5 10.0 9.4	B B B	793 797 849 807	694 780 843 800	652 737 724 790	713 771 805 799	141 60 125 17
9	1	11.4 11.2 10.8 10.4 9.9	A A B B	567 1119 1122 1216 1119	484 1050 1116 1132 1070	461 968 1093 1089 1043	504 1045 1100 1146 1077	106 151 29 127 76

A indicates that molding moisture content was at or below optimum for maximum density. B indicates that molding moisture content was above optimum for maximum density.

Table 8a (Cor	ntinued)		•			
Cement content, %	Fly ash <u>content</u> , % lab. no.	Molding moisture <u>content</u> , % type	7 day moist cured, 1 day immersed, individual unconfined compressive strengths, psi	Average strength, psi (X)	Range (R)	$r = \frac{R}{\bar{X}}$
11 11	9 1 6	9.2 B 11.4 A 11.1 A 10.7 B	1026 941 912 728 682 606 1109 957 945 1271 1218 1129	960 672 1004 1206	114 1 22 : 104 142	.1188 .1815 .1633 .1177
11	3	9.8 B 9.2 B 11.4 A 11.0 A 10.7 A 10.3 B	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1156 916 667 895 1141 1251	83 167 98 237 168 98	.0778 .1823 .1469 .2648 .1472 .0783
11	9 4	9.1 B 11.7 B 12.7 B 13.8 A	1089 1077 978 807 695 675 872 737 698 872 856 836	1025 692 764 855	111 33 174 36	.1083 .0477 .2263 .0421
11	6	15.4 A 16.2 A 16.4 A 14.7 A 13.8 A	691 639 550 402 379 349 363 313 283 458 445 428 751 701 590	627 377 320 444 680	141 53 80 30 161	.2249 .1406 .2500 .0676 .2368
11	3	13.1 A 11.9 B 11.2 B 11.3 B 12.2 A 11.4 B 12.3 A	961 957 925 925 866 853 1053 1007 981 987 938 925 691 662 642 1073 1056 961 889 856 744	948 881 1014 950 665 1030 830	36 72 72 62 49 112 145	.0380 .0817 .0710 .0653 .0737 .1087 .1747
8	9 4	11.8 B	553 537 511	534	42	.0787

•

٦.

122

• .

.

•

•

.1087 .1747	.0787 .1716 .0487 .0498 .0638 .0638 .0531 .0531 .0531 .0531 .0524	.0321 .0384 .0137 .0137 .0137 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .0138 .016 .016 .016 .016 .016 .016 .017 .017 .016 .017 .016 .016 .016 .016 .017 .017 .017 .017 .017 .017 .017 .017	.0344 .0656
112 145	<i>╅ଡ଼ଡ଼</i> %ؿؿୄୄୄୄୄୄୄୄୄୠୢ୷ୡୢୡୢ	%%%%%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	85.2 1
1030 . 830	534 577 617 811 825 833 833 833 833 833 833 835 835 835 83	66 763 767 767 767 767 767 767 767 767 7	668 655
100 100	511 520 530 552 562 562 562 562 562 562 562 562 562	400 400 400 400 400 400 400 400	659 639
1056 856	537 599 616 514 514 672 672 672 672 672 688	40444000000000000000000000000000000000	665 645
1073 889	77,668,677,6667 17,668,677,6667 17,688,677,566,673	404470334580333344726 4044503334580333344726 73345148653345803344726 733451486533458033447262	682 682
щ ч	百百百九九百九九百九日.	丸丸玉丸玉玉丸丸丸石石丸丸石	A B
4.11 12.3	11.8 11.1 11.1 11.1 11.1 11.1 11.1 11.1	11111111111111111111111111111111111111	10.9
	۲		en en
	o vo m	6 '9 m	m j
	ထ ထ ထ		ω
·	·		

Cement content, %	ontent, ash		Molding moisture <u>content</u> , % type ^a		immer unconf	oist cured sed, indiv ined compu- trengths, psi		Average strength, psi (X)	Range (R)	$r = \frac{R}{\bar{X}}$
5	0		13.7 14.6 16.3 18.7 17.7	B B A A A	247 254 261 109 169	241 238 248 100 169	221 231 241 96 169	237 241 250 102 169	26 23 20 13 0	.1097 .0954 .0800 .1275 .0000
8	0		14.9 16.2 17.2 17.2	B B A A	389 428 349 257	373 389 336 257	330 369 287 251	364 . 396 . 324 255	69 69 62 6	.1621 .1490 .1914 .0235
11	0		16.8 16.4 16.8 17.6	A B A A	392 533 524 300	392 511 505 287	386 488 445 267	390 511 491 285	6 45 79 33	.0154 .0881 .1069 .1158
5	3.	1	16.0 16.7 17.2 18.0 18.4	B B A A	277 271 231 162	274 271 228 159	267 265 221 161	273 269 227 131	10 6 10 3	.0366 .0223 .0441 .0186
5	9		18.4 15.2 16.4 17.0	A B B A	132 303 336 300	123 300 336 287	109 284 333 274	121 296 335 287	23 19 3 26	.1901 .0642 .0090 .0906

Table 8b. T	labulation of data	used in the study	' illustrating	the use of	control st	pecimens in	detecting	outliers -	loess soil
-------------	--------------------	-------------------	----------------	------------	------------	-------------	-----------	------------	------------

^aA indicates that molding moisture content was at or below optimum for maximum density.

B indicates that molding moisture content was above optimum for maximum density.

۱.

Cement content, %		<u></u>	Fly ash ontent, lab. no.	moi	ling sture tent, type		immer unconf	oist cured sed, indiv ined compr strengths, psi	ridual ressive	·	Average strength, psi (X)	Range (R)	r =
5		9	<u>1</u>	17.6	A		238	231	175		215	63	.29
11		9	•	16.0 16.0	B B		300 513	287 504	280 481		289 500	20 32	.06 .06
-4- 4		2		15.9	B		511	514	465		493	32 46	.09
				16.9	В		550	504	379		478	171	•35
				17.2	B		458	454	415		443	43	.09
				18.0	A		343 202	317 182	248 172		302	95	.31
11		6		19.4 16.0	A B		202 619	573	563	•	185 585	30 56	.00
<u>+</u> +		0		16.6	B		570	563	557		585 . 563	13	.0
				17.6	Ā		422	392	317		377	105	.2
			•	19.4	Α		202	182	172		185	30	.10
11	1	3		14.9	B		543	524	445		504 51-2	98 85 76 63 36	.19
				15.7 16.9	B A	,	576 514	553 438	491 438		540 463	05 76	.1 .1
				17.5	A		363	363	300		342	63	.1
				17.8	A		297	294	261		284	36	.1
8		6		15 . 3 [.]	В	•	412	402	392		402	20	.0
				16.0	B	•	409	405	396		403	13	.0
•				16.9 18.0	A		380	349	343		357	37 82	.1 .3
				18.3	A A		247 211	231 195	165 195		215 200	16	د. 0.
				15.0	B.		537	531	517		528	20	.0
8		3		15.3	в		369	349	343		354	26	.0
				15.9	·B		415	392	363		390	52	.1
				17.0	A		389 264	382 35)	330		377 244	59	.0
		•		17.9 18.6	A A		264 192	254 179	215 172		181	49 20	
. 8		9		14.5	B		392	386	382		387	10	

•	8	9		17.0 17.9 18.6 14.5 15.7 16.5 17.2 18.2	A A B B B A A	389 264 192 392 399 399 392 369 211	382 254 179 386 392 389 353 202	330 215 172 382 297 379 343 198	390 377 244 181 387 363 387 355 204	52 59 49 20 10 102 13 26 13	.1333 .0565 .2008 .1105 .0258 .2810 .0336 .0732 .0637
	5	9	ц .	15.2 16.1 16.9 18.1 21.2 15.7 16.8 17.7 18.8	B B B A B B B B	218 205 211 225 215 225 241 238 248	205 202 211 218 208 225 241 225 238	202 198 208 211 198 221 228 221 228 221 231	208 202 210 218 207 223 237 228 239	16 7 3 14 17 4 13 17 17	.0769 .0347 .0143 .0642 .0821 .0179 .0549 .0746 .0711
internet of a	5	3		20.5 16.9 18.3 19.1 20.3 17.7	A B A A B	179 241 169 100 218	159 231 238 165 100 218	155 228 238 155 96 211	164 233 239 163 98 216	24 13 3 14 4 7	.1463 .0558 .0126 .0859 .0408 .0324
	11	3		16.0 16.6 17.8 18.5 19.3 17.0	B B A A A B	465 478 534 429 287	455 474 507 419 287	438 458 497 412 271	452 470 513 420 282	27 20 37 17 16	.0597 .0426 .0721 .0405 .0567
	11	9		17.8 20.0 21.4 18.8 16.5	B B A B B	419 379 402 409 399 425	405 373 402 399 389 409	386 366 402 379 346 409	403 372 402 395 378 414	33 13 0 30 53 16	.0818 .0349 .0000 .0759 .1402 .0386
	•			17.9 19.0 19.9 20.0	B B A A	435 445 438 294	425 438 435 240	422 435 419 257	427 439 431 280	13 10 19 37	.0304 .0228 .0441 .1321

·			19.9 20.0	A A	438 294	435 240	419 257	431 280	19 37	.0220 .0441 .1321
8	3	-	16.1 16.7 17.5 19.7 18.5	B B A A	359 376 346 175 277	356 369 343 165 274	349 334 340 149 274	355 361 343 163 275	10 37 6 26	.0282 .1025 .0175 .1595
8	9		17.2 18.0 19.5 20.0 18.5	B B A A B	313 300 290 303 290	294 294 280 303 287	287 280 277 290 200	298 291 283 299 259	3 26 20 13 13 90	.0109 .0872 .0687 .0459 .0435
8	6	•••	17.1 18.0 19.2 19.3	B B A A	317 343 317 343	313 333 317 333	307 313 317 323	312 330 317 333	90 10 30 0 20	.3475 .0321 .0909 .0000 .0601
8	9	3	16.1 16.8 17.9 18.8 17.3	B B A B	353 363 290 172 365	323 353 287 152 240	317 333 284 149	331 344 287 158	36 30 6	.1088 .0860 .0204 .1456
8.	6		16.2 16.4 17.3 18.3	B B A A	354 386 382 221	349 343 386 363 215	349 333 354 363 162	355 345 377 369 199 260	23 16 26 27 19 59	.0451 .0754 .0716 .0515 .2965
8	3		17.9 14.8 16.0 16.7 18.1 18.6	A B B A A	277 362 379 366 228 175	257 359 364 363 215 159	244 344 353 363 198 142	260 357 367 364 214 159	27 19 59 33 13 26 3 30 33	.1269 .0364 .0708 .0082 .1402 .2075
5	. 3	3	15.1 15.7 16.9 18.0	B B A	228 257 254 175	215 254 251 175	220 248 244 165	220 253 250 172	13 9 10 10	.0591 .0356 .0400 .0581
5	9		17.5 15.1 16.2 16.7	A B B B	237 234 241 251	221 231 234 251	211 218 231 231	223 228 235 244	26 16 10 20	.1166 .0702 .0426 .0820

•

Table 8b (Continued)

$\begin{array}{c} \texttt{Cement}\\ \texttt{content},\\ \# \end{array}$	co	Fly ash ontent,	moi con	ding sture itent,	immer	7 day moist cured immersed, indiv unconfined comp		
	<i>7</i> /2	lab. no.	70	type		strengths, psi		
5	9	3	17.3 17.8	A A	231 221	229 221		
5	6		14.9 15.9 16.5 17.6 17.8	B B A A	241 244 248 238 228	238 231 248 234 221		
11	9		14.7 15.8 18.0 18.6	B B A A	497 501 359 231	432 497 300 218		
11	6		15.9 16.7 17.6 18.9 22.1	B B A A	514 494 421 274	495 471 376 244 543		
11	3		15.5 16.5 17.3 18.5 17.0	A B A A A	553 497 534 471 208 533	543 474 530 428 204 517		

y moist cured, i mersed, individu onfined compress strengths, psi	ual	Average strength, psi (X)	Range (R)	$r = \frac{R}{\bar{X}}$
221 2 238 2 231 2 248 2 234 2	221 204 231 231 241 215 188	227 216 237 235 245 229 212	10 17 10 13 7 23 40	.0441 .0787 .0422 .0553 .0286 .1004 .1887
497 1 300 2 218 2 495 1 471 1 376 3 244 2 543 1 474 1 530 5 428 2 204 1	428 455 280 205 484 479 369 238 494 442 504 280 198 514	452 484 313 218 497 479 389 252 530 471 523 393 204 522	69 46 79 26 30 23 52 36 59 55 30 191 10 19	.1527 .0950 .2524 .1193 .0604 .0480 .1337 .1429 .1113 .1168 .0574 .4860 .0490 .0364